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Abstract—Underlay spectrum sharing improves spectral uti-
lization by allowing a secondary user to transmit concurrently
with a primary user. However, the secondary user’s performance
is limited by the interference constraint that is imposed on it to
protect the primary user. Transmit antenna selection overcomes
this limitation with a hardware complexity comparable to a
single-antenna system. We present a novel and optimal joint
antenna selection and power adaptation rule for a secondary
system that is subject to the practically motivated interference-
outage constraint, which is more general than the widely studied
peak interference constraint. The rule provably minimizes the
average symbol error probability (SEP) of the secondary user.
We show that it has a fundamentally different and novel
structure compared to the ones studied in the literature. We
present key geometric insights about its novel structure. We use
these to propose a simpler, linearized, and near-optimal variant.
Compared to the rules considered in the literature, the proposed
rules reduce the average SEP by an order of magnitude.

I. INTRODUCTION

Availability of sufficient spectrum is crucial for the suc-
cess of new wireless technologies such as 5G and IEEE
802.11be [1], which target high data rates and massive con-
nectivity using larger bandwidths. While the sub-6 GHz spec-
trum has favorable propagation characteristics, it is already
crowded. Regulatory authorities are, therefore, opening up
pre-allocated spectrum bands for the shared and unlicensed
use. For example, the Federal Communications Commission
(FCC) in the USA has opened up 3.5 GHz band for the shared
use and the 6 GHz band for unlicensed secondary users [2].
These users can share the spectrum so long as they do not
cause excessive interference to the existing primary users.

In the underlay mode of spectrum sharing for which prac-
tical demonstrations now exist, the secondary user transmits
concurrently in the same spectrum as the primary user, but
is subject to a constraint on the interference it causes to
the primary receiver (PRx) [3], [4]. While the interference
constraint protects the PRx from excessive interference, it also
can significantly degrade the secondary user’s performance.
Furthermore, it plays a key role in determining the optimal
transmission strategy of the secondary user. Though the un-
derlay mode has been extensively studied in the context of
cognitive radio, fundamental questions such as the right in-
terference constraint to impose and the corresponding optimal
transmission policy for the secondary users are still open.
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Transmit antenna selection (TAS) is a technology that
improves the secondary user’s performance [5]–[9]. In it, the
secondary transmitter (STx) dynamically selects one antenna
among multiple antennas, connects it to the radio frequency
(RF) chain, and transmits data to the secondary receiver
(SRx). It is appealing as it exploits the spatial diversity of
multiple antennas but with a hardware complexity comparable
to a single-antenna system.

In TAS in conventional interference-unconstrained systems,
the antenna selected at the transmitter depends only on the
channel gains from the transmitter to the receiver. For exam-
ple, [10] selects the antenna with the highest instantaneous
channel power gain to the receiver. However, in an underlay
secondary system, TAS must also consider the STx to PRx
(STx-PRx) channel gains along with the STx to SRx (STx-
SRx) channel gains since it simultaneously needs to control
the interference it causes to the PRx. For example, for a
secondary system that is subject to the peak interference
constraint, which limits the instantaneous interference power
at the PRx to lie below a threshold, the STx in [7] selects
the antenna with the highest ratio of the STx-SRx and STx-
PRx channel power gains. Its transmit power is inversely
proportional to the STx-PRx channel power gain. Variations
of this idea are also considered in [6], [8].

However, the antenna selection and power adaptation
(ASPA) rules turn out to be very different for stochastic
constraints such as the average interference constraint [5],
[9] and the interference-outage constraint [11]. The average
interference constraint limits the fading-averaged interference
power at the PRx. Instead, the interference-outage constraint
limits the probability that the interference power at the PRx
exceeds a threshold [11], [12]. The optimal ASPA rule for the
average interference constraint [5] has a very different form
than the one developed for the peak interference constraint [6].
However, the optimal ASPA rule is not known in the literature
for the interference-outage constraint.

Studying the interference-outage constraint is theoretically
and practically important in the underlay spectrum sharing
systems for the following reasons. Firstly, it is a generaliza-
tion of the widely studied peak interference constraint [13].
Secondly, to satisfy the peak interference constraint, the STx
needs to perfectly know the instantaneous STx-PRx channel
power gains, which can be difficult in practical systems that
suffer from estimation errors or encounter time-variations in
the channel. However, this is not so for the interference-outage
constraint given its stochastic nature. Thirdly, it is well suited
for primary systems that offer delay or disruption-tolerant
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services and are designed to tolerate co-channel interference-
induced outages [11], [12].

A. Focus and Contributions

In this paper, we address the problem of joint antenna
selection and power adaptation for an underlay secondary
system that is subject to the interference-outage constraint
and a peak transmit power constraint. The peak transmit power
constraint is motivated by the RF circuit output limitations [6].

We make the following contributions:
• We present an optimal ASPA rule that minimizes the

average symbol error probability (SEP) of a interference-
outage constrained secondary user. Given the funda-
mental role that the interference constraint plays in
an underlay spectrum sharing system, considering this
interference constraint leads to a different optimization
problem and an altogether different optimal rule.

• We present a novel and closed-form specification of the
optimal antenna and its transmit power. We then present
an insightful geometric interpretation of the optimal rule
in terms of three regions in which the STx-SRx and STx-
PRx channel power gains can lie.

• We exploit the above geometric interpretation to present
a new, simpler rule called the linear rule. We prove
that its average SEP lower bounds that of the optimal
rule. We also derive a closed-form upper bound for its
interference-outage probability.

• Our performance benchmarking with several other ASPA
rules shows that the optimal rule reduces the average
SEP by an order of magnitude and that the practically
amenable linear rule is near-optimal.

The optimal ASPA rule markedly differs from the rules
in [5], in which the transmit power is a logarithmic function
of a ratio of the STx-SRx and STx-PRx channel power gains,
and in [6]–[8], in which the transmit power is independent of
the STx-SRx channel power gain. It also differs from the rule
in [11], in which the net cost of an antenna is a continuous
function of its STx-SRx channel power gain.

B. Outline and Notation

Section II presents the system model and the problem
statement. The optimal and linear rules are developed in Sec-
tions III and IV, respectively. Numerical results are shown in
Section V, and are followed by our conclusions in Section VI.

Notation: Scalar variables are written in normal font and
vector variables in bold font. The probability of an event A
and the conditional probability of A given B are denoted by
Pr (A) and Pr (A|B), respectively. EX [·] denotes expectation
with respect to a random variable (RV) X . I{a} denotes the
indicator function; it is 1 if a is true and is 0 otherwise.

II. SYSTEM MODEL AND PROBLEM STATEMENT

The system model is shown in Fig. 1. It consists of an STx
that communicates with an SRx and interferes with the PRx.
The STx dynamically selects one among the Nt transmit an-
tennas and connects it to the RF chain. The SRx and PRx are

STx

1
PRx

SRx

RF chain

Data

Fig. 1. System model that consists of an STx with Nt antennas and one RF
chain. It transmits data to an SRx, which causes interference to a PRx.

each equipped with one antenna each. For k ∈ {1, 2, . . . , Nt},
hk denotes the instantaneous channel power gain from the
kth antenna of the STx to the SRx and gk denotes the
instantaneous channel power gain from the kth antenna of the
STx to the PRx. They undergo Rayleigh fading. We assume
that the STx-SRx channels are independent and identically
distributed (i.i.d.) RVs, and so are the STx-PRx channels. This
occurs when the antennas are sufficiently spaced apart, and
is commonly assumed in the related literature [6]–[9]. Thus,
hk and gk are i.i.d. exponential RVs with means µh and µg ,
respectively. Let h , [h1, . . . , hNt

] and g , [g1, . . . , gNt
].

The STx selects an antenna s and transmits with power Ps.
Note that both s and Ps are functions of h and g.

Let S(Pk, hk) denote the instantaneous SEP when antenna
k transmits with power Pk. It is given by [14, (9.7)]

S(Pk, hk) ≈ c1 exp

(
−c2

Pkhk

σ2

)
, for 1 ≤ k ≤ Nt, (1)

where c1 and c2 are modulation-dependent parameters and σ2

is sum of the noise power at the SRx and the interference
power from the primary transmissions [5], [9], [12]. The
above formula applies to many constellations, for example,
differential BPSK, QPSK, 8-PSK, and 16-QAM [6], [11].

Our channel state information (CSI) model is similar to that
in [5], [6], [9], [11]. Specifically, the STx knows the STx-
SRx channel power gains h and the STx-PRx channel power
gains g. It does not need phase information of any of these
channels. When the primary and secondary systems operate
in the time division duplexing mode, the STx can estimate h
and g by making use of reciprocity by periodically sensing
the signal from the SRx and PRx, respectively. Alternately, in
the frequency division duplexing mode, the STx can obtain
h using feedback and g using the hidden power feedback
loop technique [15]. The SRx uses pilot symbols embedded
in the data to estimate the complex baseband channel from
the antenna s to itself and performs coherent demodulation.

A. Constraints and Problem Statement

The STx is subject to the following two constraints:
1) Interference-Outage Constraint [11], [12]: The instan-

taneous interference power at the PRx is equal to Psgs. An
interference-outage happens when Psgs exceeds the interfer-
ence power threshold τ . Thus, the constraint can be formally
stated as Pr (Psgs > τ) ≤ Omax, where Omax is the maximum
allowed interference-outage probability. For the PRx, this is



a stochastic constraint because the antenna s selected and its
transmit power Ps, which depend on h and g, are RVs for it.

2) Peak Transmit Power Constraint [6], [7]: It is given by
Ps≤Pmax, where Pmax is the peak transmit power.

ASPA Rule Definition: Formally, an ASPA rule ϕ maps
(h,g) to an antenna s in the set {1, 2, . . . , Nt} and a transmit
power Ps in the interval [0, Pmax], i.e., (s, Ps) = ϕ(h,g).

Our goal is to derive an optimal ASPA rule ϕ∗ that
minimizes the average SEP of a secondary user that is subject
to the above constraints. Our problem P is as follows:

P : min
ϕ

Eh,g [S(Ps, hs)] , (2)

s.t. Pr (Psgs > τ) ≤ Omax, (3)
0 ≤ Ps ≤ Pmax, (4)
(s, Ps) = ϕ(h,g). (5)

III. OPTIMAL RULE AND ITS BEHAVIOR

A. Optimal Rule

First, consider the scenario in which the interference-
outage constraint is inactive. Since the instantaneous SEP is
a monotonically decreasing function of Pshs, it is easy to
see that the optimal rule selects the antenna with the highest
STx-SRx channel power gain and transmits with peak power
Pmax:

s = argmax
1≤k≤Nt

{hk} and Ps = Pmax. (6)

We shall refer to this as the unconstrained (UC) rule. Its
interference-outage probability Ou is given by

Ou = Pr (Pmaxgs > τ) = Pr (Pmaxg1 > τ) = e
− τ

µgPmax . (7)

Here, the second equality follows because the antenna selected
by the UC rule is independent of g and g1, . . . , gNt

are i.i.d.
When Ou ≤ Omax, the UC rule satisfies the constraint in (3)
and is optimal. We shall refer to this as the unconstrained
regime. However, when Ou > Omax, the UC rule does not
satisfy the constraint in (3). We shall refer to this as the
constrained regime and present the optimal rule for it below.

Result 1: In the constrained regime, the optimal ASPA rule
selects the antenna

s∗ = argmin
k∈{1,2,...,Nt}

{NCk} , (8)

where
NCk , S(Pk, hk) + λI{Pkgk>τ}, (9)

and

Pk =

 Pmax, if Pmaxgk ≤ τ,
Pmax, if S (τ/gk, hk) > S (Pmax, hk) + λ,
τ/gk, else.

(10)

It transmits with power Ps∗ . Here, λ is a penalty factor that is
set to be equal to λ∗ ∈ (0, c1), such that Pr (Ps∗gs∗ > τ) =
Omax. And, a unique choice of λ∗ always exists.

Proof: The proof is given in Appendix A.
Here, for an antenna k, NCk can be interpreted as its

net cost and Pk as its transmit power if it were selected.

0 hk

gk

Pk = PmaxOI (Ik)

Pk = τ/gkOCPC (Ck)

Pk = PmaxOCPP (Uk)

τ

Pmax

(a) Optimal rule

hk

gk

0

P̂k = PmaxOI (Îk)

P̂k = τ/gkOCPC (Ĉk)

P̂k = PmaxOCPP (Ûk)

τ/(mPmax)

g k
=
m
h k

τ

Pmax

(b) Linear rule

Fig. 2. Structure of optimal rule: OCPP, OCPC, and OI regions and the
transmit power of antenna k as a function of hk and gk .

Therefore, the optimal rule selects the antenna s∗ with the
smallest net cost and transmits with power Ps∗ . We note that
the above net cost NCk is a discontinuous function of both hk

and gk unlike the net costs of the optimal rules for the peak
interference constraint [6, (4)] and the average interference
constraint [5, (14)]. We also note that Pk is different from that
in [6, (1)], which is independent of hk, and that in [5, (16)],
which is a logarithmic function of hk and gk. The optimal
penalty factor λ∗ is computed numerically, as is typical in
several constrained optimization problems [5], [9], [14]. In
Section IV, we present a closed-form bound based approach
to directly compute it analytically.

B. Behavior of the Optimal Rule

A key insight from (10) is that the optimal transmit power
Pk of antenna k is different in the following three regions:

1) If Pmaxgk ≤ τ , it transmits with peak power Pmax and
does not cause an interference-outage. Hence, we call it
an outage-compliant peak power (OCPP) antenna.

2) If S (τ/gk, hk) > S (Pmax, hk)+λ, it transmits with Pmax
but causes an interference-outage because Pmaxgk > τ .
Hence, we call it an outage-inducing (OI) antenna.

3) Else, it transmits with power Pk = τ/gk < Pmax and
does not cause an interference-outage. Hence, we call it
an outage-compliant power constrained (OCPC) antenna.

We denote the regions in which antenna k is an OCPP,
OCPC, and OI antenna as Uk, Ck, and Ik, respectively. These
are shown in Fig. 2a. Using (8) and (10), it can be shown that
for λ = 0, the optimal rule becomes equivalent to the UC rule
in (6). For λ = c1, it computes Pk = min {Pmax, τ/gk} and
selects s∗ = argmax1≤i≤Nt

{Pihi}, which is the same as the
ASPA rule in [6].



IV. LINEAR RULE AND ITS ANALYSIS

In Fig. 2a, we see that the boundary between Ck and Ik is
a non-linear function of hk and gk. This makes it difficult to
analyze the performance of the optimal rule and gain rigorous
insights about its performance. To address this, we now
propose the linear rule. We shall show that it lower bounds the
average SEP of the optimal rule. We also derive a closed-form
upper bound for its interference-outage probability, which
makes it easy to practically implement the linear rule.

In the linear rule, we classify an antenna k as OCPP
antenna if Pmaxgk ≤ τ , as an OI antenna if Pmaxgk > τ
and S (τ/gk, hk) > λ (which is obtained by dropping the
S (Pmax, hk) term from the inequality in the definition of an
OI antenna for the optimal rule), and as an OCPC antenna
otherwise. Using (1) and algebraic simplifications, the three
regions for the linear rule can be written as

OCPP : Ûk = {(hk, gk) : Pmaxgk ≤ τ} , (11a)

OCPC : Ĉk = {(hk, gk) : Pmaxgk > τ, gk ≤ mhk} , (11b)

OI : Îk = {(hk, gk) : Pmaxgk > τ, gk > mhk} . (11c)

Here, m = −c2τ/
(
σ2 ln (λ/c1)

)
is the slope of the line that

divides Ĉk and Îk, as shown in Fig. 2b. The linear rule in
terms of the these three regions can be interpreted as follows.
It first computes the power P̂k of antenna k as follows:

P̂k =

{
τ/gk, if (hk, gk) ∈ Ĉk,
Pmax, else.

(12)

It then selects antenna s = argmin
{
N̂C1, . . . , N̂CNt

}
, where

N̂Ck , S(P̂k, hk) + λI{P̂kgk>τ}, for 1 ≤ k ≤ Nt, (13)

and transmits with power P̂s. Note that for λ = 0 and λ = c1,
the linear rule is equivalent to the optimal rule.

Result 2: For a given λ ∈ (0, c1), the average SEP of the
linear rule lower bounds the average SEP of the optimal rule.

Proof: The proof is given in Appendix B.
Similarly, it can be shown that the interference-outage

probability Oλ of the linear rule upper bounds that of the
optimal rule. We now derive an upper bound for Oλ.

Result 3: Oλ can be upper bounded as follows:

Oλ ≤ Bλ =

[
1−

(
λ

c1

) 1
c2Ω

+

(
λ

c1

) 1
c2Ω Ouµg

µg +mµh

]Nt

−

[
(1−Ou)

(
1−

(
λ

c1

) 1
c2Ω

)]Nt

, (14)

where Ω = Pmaxµh/σ
2.

Proof: The proof is given in Appendix C.
The interference-outage probability decreases as λ in-

creases and Bλ upper bounds Oλ. This implies that the linear
rule with its penalty factor set to the upper bound of λ that
is obtained by solving Bλ = Omax satisfies the interference-
outage constraint. Furthermore, Bλ becomes tighter as Pmax

increases. From (7), we get Ou → 1 as Pmax increases. Sub-
stituting this limit in (14), we get Bλ = (µg/(µg +mµh))

Nt

for large Pmax. Equating this with Omax yields the following
closed-form expression for λ:

λ = c1 exp

(
−c2τµh

σ2µg

(Omax)
1/Nt

(1− (Omax)
1/Nt)

)
. (15)

We see that λ decreases as Nt or Omax increases.

V. NUMERICAL RESULTS AND BENCHMARKING

We now present Monte Carlo simulations to study and com-
pare the performance of the proposed ASPA rules with several
other rules in the literature. We set µh = −114 dB, µg =
−121 dB, and σ2 = −109 dBm, which leads to a peak fading-
averaged signal-to-noise ratio (SNR) Ω

(
Pmaxµh/σ

2
)
= 10 dB

for a peak transmit power (Pmax) of 15 dBm.1

Performance Benchmarking: We compare the proposed
optimal rule with the following ASPA rules: minimum inter-
ference (MI) rule [8], maximum ratio (MR) rule [7], and max-
imum signal power (MSP) rule [6]. As originally proposed,
these rules set the transmit power as Pk = min{Pmax, τ/gk},
which leads to zero interference-outage probability. Therefore,
to enable them to better exploit the leeway allowed by the
interference constraint, we use the following more general
transmit power policy: Pk = Pmax if Pmaxgk ≤ τ ; else,

Pk =

{
Pmax, with probability q,
τ/gk, with probability 1− q.

(16)

We set q numerically such that the interference-outage prob-
ability is equal to Omax.

The MI rule selects the antenna s = argmin1≤k≤Nt
{gk}

and transmits with power Ps as per (16). The MR rule selects
the antenna s = argmax1≤k≤Nt

{hk/gk} and transmits with
power Ps given by (16). The MSP rule first computes Pk

as per (16) for each antenna k. It then selects the antenna
s = argmax1≤k≤Nt

{Pkhk} and transmits with power Ps.
In addition, to evaluate the gains from transmit power

adaptation, we also compare with the on-off power adaptation
rule [11, (9)] in which Ps is either 0 or Pmax. It selects

s = argmin
k∈{0,1,...,Nt}

{S (Pmax, hk) + αI{Pmaxgk>τ}}. (17)

Here, s = 0 represents the case when the STx transmits with
zero power in order not to cause interference-outage at the
PRx and h0 = g0 , 0. Hence, Ps = 0 if s = 0; else, Ps =
Pmax. The parameter α is chosen such that Pr (Psgs > τ) =
Omax in the constrained regime. Else, α = 0.

Fig. 3 compares the average SEP as a function of the peak
fading-averaged SNR Ω for all the above rules. The behavior
is different in the following two regimes: (i) Unconstrained
regime (Ω ≤ 2.9 dB): Here, the average SEPs of the optimal

1These values correspond to a system bandwidth of 1 MHz, a carrier
frequency of 2.4 GHz, a path-loss exponent of 3.7, a noise figure of 5 dB,
at 300 K temperature. We considered a reference distance of 1 m, a distance
of 100 m between the STx and SRx, and a distance of 150 m between the
STx and PRx as per the simplified path-loss model [14, Chap. 2.6].
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Fig. 3. Performance benchmarking: Average SEP as a function of Ω for
different ASPA rules (Nt = 4, Omax = 0.01, τ/σ2 = 3 dB, and QPSK
with c1 = 0.5 and c2 = 0.6).

rule (λ∗ = 0), the linear rule (λ = 0), the MSP rule (q = 0),
and the on-off rule (α = 0) are the same and decrease
as Ω increases. (ii) Constrained regime (Ω > 2.9 dB):
From (7), it can be shown that this regime corresponds to
Ω > −τµh/(µgσ

2 ln(Omax)) in general. Here, the penalty
factors of the optimal rule (λ∗ > 0), the linear rule (λ > 0),
and the other ASPA rules are chosen to meet the interference-
outage constraint with equality. The average SEPs of all the
rules decrease as Ω increases and reach error floors. This is
because, for large Ω, the average SEP is dominated by the
event in which the STx transmits with power τ/gk. The error
floor of the optimal rule is lower than that of the MI, MSP,
and MR rules by a factor of 32.3, 2.3, and 2.3, respectively.
It is lower than that of the on-off rule in (17) by a factor of
27, which shows that our power adaptation exploits the CSI
much more effectively. Also, the linear rule is near-optimal.

Fig. 4 plots the average SEP of the linear rule as a function
of Ω for two constellations and different values of Nt. We
compare its performance when the penalty factor λ is obtained
by equating the exact interference-outage probability Oλ with
Omax and when it is obtained by equating the interference-
outage upper bound Bλ in (14) with Omax. As mentioned
in Section IV, using Bλ ensures that the interference-outage
probability is lower than Omax. We see that the average SEP
so obtained is only marginally more than that obtained using
Oλ; the difference between the two vanishes as Ω increases.
This is because Bλ is tight for small Ω and becomes exact
for large Ω. Thus, Bλ helps in implementing the linear rule in
a near-optimal manner with much lower complexity. We also
see that the error floor decreases significantly as Nt increases.

VI. CONCLUSIONS

We proposed a novel and optimal ASPA rule that minimized
the average SEP of an underlay spectrum sharing system
that was subject to the interference-outage and peak transmit
power constraints. We observed that the optimal transmit
power and the net cost of each antenna were discontinuous
functions of both STx-SRx and STx-PRx channel power gains
and were very different from other rules in the literature. This
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Fig. 4. Linear rule: Average SEP as a function of Ω for 8-PSK with c1 = 0.6
and c2 = 0.18 and 16-QAM with c1 = 0.8 and c2 = 0.12 (Omax = 0.1
and τ/σ2 = 3 dB).

brings out the fundamental role that the interference constraint
plays in an underlay spectrum sharing system. We saw that
the interference-outage probability of the linear rule could be
bounded in closed-form, which made implementing it easy in
practice. It also led to a closed-form expression for λ when
Pmax was large. We showed that both optimal and linear rules
reduced the average SEP by a significant margin compared to
other ASPA rules in the literature.

APPENDIX

A. Proof of Result 1

We shall say that an ASPA rule ϕ is feasible if it satisfies
both constraints in (3) and (4). For any feasible rule ϕ, define

Lϕ(λ) , E
[
S(Ps, hs) + λI{Psgs>τ}

]
, (18)

where the expectation is over h and g. Consider ϕ∗ defined
as

(s∗, Ps∗) , argmin
{(k,Pk):k={1,2,...,Nt}, Pk∈[0,Pmax]}

{NCk} , (19)

where NCk = S(Pk, hk) + λI{Pkgk>τ} and λ is set to be
equal to λ∗ > 0 such that Pr (Ps∗gs∗ > τ) = Omax.2 Clearly,
by construction, ϕ∗ is a feasible rule.

From (18), it is clear that Lϕ∗(λ∗) ≤ Lϕ(λ
∗). Thus,

E
[
S(Ps∗ ,hs∗)+λ∗I{Ps∗gs∗>τ}

]
≤E
[
S(Ps,hs)+λ∗I{Psgs>τ}

]
.

Using E
[
I{a}

]
= Pr (a), Pr (Ps∗gs∗ > τ) = Omax, and

rearranging the terms in the above inequality, we get

E [S(Ps∗ , hs∗)]≤E [S(Ps, hs)] + λ∗(Pr (Psgs > τ)−Omax) .

As λ∗ > 0 and Pr (Psgs > τ) ≤ Omax, it is clear that
E [S(Ps∗ , hs∗)]≤E [S(Ps, hs)]. Thus, ϕ∗ is SEP-optimal.

Value of Pk that Minimizes NCk: We consider two cases:
1) Pmaxgk ≤ τ : Here, for all Pk ∈ [0, Pmax], we have

I{Pkgk>τ} = 0. As S(Pk, hk) is a monotonically decreasing
function of Pk, NCk attains its minimum at Pmax.

2It can be shown that Pr (Ps∗gs∗ > τ) is a monotonically decreasing and
continuous function of λ. Then, the existence of a unique λ∗ follows from
the intermediate value theorem.



2) Pmaxgk > τ : Here, for Pk ∈ [0, τ/gk], we have
I{Pkgk>τ} = 0. Thus, NCk = S(Pk, hk), where it takes the
smallest value at Pk = τ/gk. Similarly, for Pk ∈ (τ/gk, Pmax],
we have I{Pkgk>τ} = 1. Thus, NCk = S (Pmax, hk)+λ, where
it takes the smallest value at Pk = Pmax. Thus, the value of
Pk that minimizes NCk can be written as

Pk =

{
Pmax, if S (τ/gk, hk) > S (Pmax, hk) + λ,
τ/gk, else. (20)

Combining the above two cases yields (10).

B. Proof of Result 2

As the region Îk is obtained by dropping a positive term
S (Pmax, hk) > 0, it can be shown that Ik ⊂ Îk, as can be
seen from Fig. 2b. Thus, when Pmaxgk > τ , the linear rule
transmits with the peak power Pmax with a higher probability
than the optimal rule. Hence, its average SEP lower bounds
that of the optimal rule.

C. Brief Proof of Result 3

Let Ûk , {(hk, gk) ∈ Ûk} and Îk , {(hk, gk) ∈ Îk}
denote the events in which (hk, gk) belongs to the OCPP and
OI regions, respectively. An interference-outage happens only
when the linear rule selects an antenna s in the OI region.
Thus, we can write

Oλ = Pr
(
Îs

)
= NtPr

(
s = 1, Î1

)
, (21)

where the second equality follows by symmetry. Using (13)
and the definitions of the OCPC and OI regions in (11b)
and (11c), respectively, it can be shown that antenna 1 in
the OI region is selected only if no other antenna is in the
OCPC region. Therefore, among the antennas {2, . . . , Nt}, let
k of them be in the OI region and the remaining be in the
OCPP region. There are

(
Nt−1

k

)
possible combinations, which

by symmetry are equally likely.
Let Ek = {Î2, . . . , Îk+1, Ûk+2, . . . , ÛNt} be one such event

where the antennas 2, . . . , k + 1 are in the OI region and the
antennas k + 2, . . . , Nt are in the OCPP region. Then,

Pr
(
s = 1, Î1

)
=

Nt−1∑
k=0

(
Nt − 1

k

)
Pr
(
s = 1, Î1, Ek

)
, (22)

For 1 ≤ i ≤ k + 1, from (13), we know that N̂Ci =
S (Pmax, hi) + λ. Similarly, for k + 2 ≤ i ≤ Nt, N̂Ci =
S (Pmax, hi). Therefore, the summand in (22) becomes

Pr
(
s = 1, Î1, Ek

)
= Pr

(
Î1, h2 < h1, Î2, . . . , hk+1 < h1,

Îk+1,S (Pmax, h1) + λ < S (Pmax, hk+2) , Ûk+2, . . . ,

S (Pmax, h1) + λ < S (Pmax, hNt
) , ÛNt

)
. (23)

Conditioning on h1, and using the i.i.d. assumption, we get

Pr
(
s = 1, Î1, Ek|h1=x

)
=T1(x)[T2(x)]

k
[T3(x)]

Nt−1−k
,

(24)
where T1(x)=Pr

(
Î1|h1 = x

)
, T2(x)=Pr

(
h2 < x, Î2

)
, and

T3(x)=Pr
(
S(Pmax, x) + λ < S (Pmax, hk+2) , Ûk+2

)
.

We now evaluate these three terms separately.
1) T1(x): If mx≤τ/Pmax, then T1(x)=Pr (Pmaxg1 > τ)=

Ou. Else, T1(x)=Pr (g1 > mx)=exp (−mx/µg).
2) T2(x): If mx ≤ τ/Pmax, T2(x) =

Ou (1− exp(−x/µh)). Else, it can be simplified as

T2(x) = Ou−
mµhOu

µg +mµh

(
λ

c1

) 1
c2Ω

− µge
−
(

m
µg

+ 1
µh

)
x

µg +mµh
. (25)

3) T3(x): We upper bound T3(x) by dropping S(Pmax, x)
inside the probability term. Thus, we get T3(x) ≤
Pr (λ < S (Pmax, hk+2) , Pmaxgk+2 ≤ τ). Using the SEP ex-
pression in (1), we get T3(x) ≤ (1−Ou)

(
1− (λ/c1)

1
c2Ω

)
.

Substituting T1(x), T2(x), and the bound for T3(x)
in (24) and averaging over h1 yields the bound for
Pr
(
s = 1, Î1, Ek

)
. Substituting it in (22) and (21), and sim-

plifying yields (14).

REFERENCES

[1] A. Garcia-rodriguez, L. Galati-giordano, M. Kasslin, and K. Doppler,
“IEEE 802.11be – extremely high throughput: The next generation of
Wi-Fi technology,” arXiv:1902.04320v1, pp. 1–7, Feb. 2019.

[2] FCC, “Unlicensed use of the 6 GHz band; Expanding flexible use in
mid-band spectrum between 3.7 and 24 GHz,” Tech. Rep. FCC-18-147,
Oct. 2018.

[3] A. Goldsmith, S. A. Jafar, I. Maric, and S. Srinivasa, “Breaking
spectrum gridlock with cognitive radios: An information theoretic
perspective,” Proc. IEEE, vol. 97, no. 5, pp. 894–914, May 2009.

[4] P. K. Sangdeh, H. Pirayesh, H. Zeng, and H. Li, “A practical under-
lay spectrum sharing scheme for cognitive radio networks,” in Proc.
INFOCOM, Apr. 2019.

[5] R. Sarvendranath and N. B. Mehta, “Antenna selection with power
adaptation in interference-constrained cognitive radios,” IEEE Trans.
Commun., vol. 62, no. 3, pp. 786–796, Mar. 2014.

[6] F. A. Khan, K. Tourki, M. S. Alouini, and K. A. Qaraqe, “Performance
analysis of a power limited spectrum sharing system with TAS/MRC,”
IEEE Trans. Signal Process., vol. 62, no. 4, pp. 954–967, Feb. 2014.

[7] K. Tourki, F. A. Khan, K. A. Qaraqe, H. Yang, and M. Alouini, “Exact
performance analysis of MIMO cognitive radio systems using transmit
antenna selection,” IEEE J. Sel. Areas Commun., vol. 32, no. 3, pp.
425–438, Mar. 2014.

[8] H. Y. Kong and Asaduzzaman, “On the outage behavior of interference
temperature limited CR-MISO channel,” J. Commun. Netw., vol. 13,
no. 5, pp. 456–462, Oct. 2011.

[9] Y. Wang and J. Coon, “Difference antenna selection and power allo-
cation for wireless cognitive systems,” IEEE Trans. Commun., vol. 59,
no. 12, pp. 3494–3503, Dec. 2011.

[10] Z. Chen, J. Yuan, and B. Vucetic, “Analysis of transmit antenna
selection/maximal-ratio combining in Rayleigh fading channels,” IEEE
Trans. Veh. Technol., vol. 54, no. 4, pp. 1312–1321, Jul. 2005.

[11] R. Sarvendranath and N. B. Mehta, “Transmit antenna selection for
interference-outage constrained underlay CR,” IEEE Trans. Commun.,
vol. 66, no. 9, pp. 3772–3783, Sep. 2018.

[12] S. Kashyap and N. B. Mehta, “SEP-optimal transmit power policy for
peak power and interference outage probability constrained underlay
cognitive radios,” IEEE Trans. Wireless Commun., vol. 12, no. 12, pp.
6371–6381, Dec. 2013.

[13] L. Musavian and S. Aissa, “Fundamental capacity limits of cognitive
radio in fading environments with imperfect channel information,” IEEE
Trans. Commun., vol. 57, no. 11, pp. 3472–3480, Nov. 2009.

[14] A. J. Goldsmith, Wireless Communications. Cambridge Univ. Press,
2005.

[15] R. Zhang, “On active learning and supervised transmission of spectrum
sharing based cognitive radios by exploiting hidden primary radio
feedback,” IEEE Trans. Commun., vol. 58, no. 10, pp. 2960–2970, Oct.
2010.


	Select a link below
	Return to Previous View
	Return to Main Menu




