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Abstract—Cooperative relaying and multiple-input multiple-
output (MIMO) transmission technologies exploit spatial diver-
sity to improve the performance of the secondary users in an
underlay cognitive radio network. We consider a MIMO cognitive
relay network in which a secondary source and multiple relays
have imperfect channel state information (CSI) of the interference
links to the primary receiver. They sufficiently back-off their
transmit powers on the basis of such CSI in order to adhere to an
interference outage constraint. We propose an optimal relay and
antenna selection scheme, which jointly selects a relay between
the source and destination, a transmit antenna at the source, and
a receive antenna at the destination to maximize the end-to-end
signal-to-interference-plus-noise ratio (SINR) at the destination.
To demonstrate the advantages of our proposed framework, we
derive closed-form expression for the outage probability of the
secondary network under non-identically distributed Rayleigh
fading channels. We also derive an insightful expression for the
asymptotic outage probability for high SINR and show that the
diversity gain is lost when the interference power constraint is
fixed. We then consider a practical scenario where the secondary
users have only the mean channel power gains of the interference
links. Under such CSI, we also derive an expression for the
outage probability, and show that this can be used as a better
performance/complexity tradeoff for high SINR.

Index Terms—Cognitive radio network, MIMO, relay and
antenna selection, outage probability, imperfect CSI.

I. INTRODUCTION

Availability of sufficient spectrum is crucial for the suc-

cess of new wireless technologies such as 5G and IEEE

802:11be [1], which target high data rates and massive con-

nectivity using larger bandwidths. Regulatory authorities are,

therefore, opening up pre-allocated spectrum bands for the

shared and unlicensed use. Cognitive radio (CR) is a spectrum

sharing technology that promises to significantly improve the

utilization of scarce wireless spectrum. In the underlay mode

of CR, a secondary user (SU) can simultaneously transmit on

the same frequency band as a higher priority primary user

(PU) so long as the interference it causes to the PU is tightly

constrained. However, the interference constraint results in

lower reliability and limited coverage for the SUs.

Cooperative relaying, which is also being considered in

cellular systems [2], in combination with relay selection is an

attractive, practicable solution to improve the performance of

the SUs. In it, a single relay is selected to forward a message

from a secondary source (S) to a secondary destination (D).
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The performance of the SUs can be further improved by using

multiple-input multiple-output (MIMO) transmission technol-

ogy. However, this requires enabling multiple transmit and

receive radio frequency (RF) chains, which increases hardware

complexity and cost. Antenna selection is a low complexity

multiple-antenna technique that harnesses spatial diversity [3].

A fundamental difference that arises in underlay CR, when

compared to conventional cooperative networks, is that the

transmit powers of the SUs and the relay and antenna selection

schemes depend on the interference caused to the PUs. The

channel state information (CSI) available at the SUs about the

interference links to the primary receiver and the nature of the

interference constraint control this dependence. We summarize

below the various models considered in the CR literature for

antenna and/or relay selection.

A. Literature on Antenna and/or Relay Selection

With Perfect CSI of Interference Links: A single-relay coop-

erative MIMO network is considered in [3]–[5], and various

schemes for transmit and/or receive antenna selection at S,

D, and the relay are proposed. Instead, multiple spatially

separated relays are considered in [6], [7]. In [6], instead

of relay selection, the relays transmit simultaneously using

beamforming. However, this increases feedback overhead and

complexity to compute the beamforming matrices. In it, mul-

tiple antennas are considered only at D and the antenna with

the highest signal-to-noise ratio (SNR) at D is selected. In [7],

instead of antenna selection, beamforming is used at S and

D, and the single-antenna relay that maximizes the signal-to-

interference-plus-noise ratio (SINR) at D is selected.

With Imperfect CSI of Interference Links: Various transmit

antenna selection schemes have been studied in [8], [9] when

the SUs have imperfect CSI about the interference links

to the primary receiver. However, they consider a single-

relay cooperative MIMO network, which can not be readily

extended to the multiple-relay network.

B. Novelty and Contributions

As can be seen from the aforementioned studies, there is no

prior work which focuses on joint relay and antenna selection

for multiple-relay cognitive MIMO network. Among multiple

antenna techniques, transmit antenna selection, in which the

transmitter selects one among multiple antennas and connects

to the one available RF chain, is appealing as it exploits spatial

diversity with low-hardware complexity. Furthermore, it needs

only information of the channel power gains, which is easier to

obtain compared to the complex baseband channel gains, and
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is robust to channel estimation errors [10]. Similarly, antenna

selection at the receiver has the same advantages over maximal

ratio combining, which needs multiple RF chains.

Motivated by the promising advantages of relay and trans-

mit/receive antenna selection studied for the conventional

cooperative networks [10] and to fill-in the gap, in this paper,

we propose an optimal relay and antenna selection (ORAS)

scheme for an underlay CR network that consists of a S, D,

and multiple decode-and-forward (DF) relays, in which S and

D are equipped with multiple antennas. This model can find

applications in cellular communication systems and wireless

sensor networks, since the base station and access point can

be configured with multiple antennas while other nodes may

be limited to a single antenna due to size, cost, and power

constraints. Furthermore, we assume that the channel gains

from/to different relays are non-identically distributed, and S
and the relays have imperfect CSI about the interference links

to the primary receiver due to channel estimation error.

In this paper, we make the following contributions: (i) We

propose an ORAS scheme, which selects the optimal transmit

antenna at S, the optimal receive antenna at D, and the optimal

relay in order to maximize the end-to-end SINR at D, (ii) We

derive an exact outage probability expression for the secondary

network, in which S and the relays control their transmit

powers as a function of the available CSI in order to satisfy

an interference outage constraint and a peak transmit power

constraint, and in which the corresponding ORAS scheme

is employed, (iii) To gain more insights, we investigate the

high SINR asymptotic regime and obtain the diversity order,

and (iv) We also derive an outage probability expression for

a special case when the secondary users have only the mean

channel power gains of the interference links, and show that

this can be used as a better performance/complexity tradeoff.

We note that the analysis with imperfect CSI, which is useful

for understanding the efficacy of CR in practical scenarios, is

novel. Results for the special case with perfect CSI can be

easily obtained from this, and are also novel.

Notations: The probability of an event A and the conditional

probability of A given event B are denoted by Pr(A) and

Pr(A|B), respectively. For a random variable (RV) X , fX(.)
and FX(.) indicate the probability density function (PDF) and

the cumulative distribution function (CDF), respectively. The

indicator function 1{a} is 1 if a is true and is 0 otherwise,

X ∼ CN (0, σ2) means that X is a circularly symmetric, zero-

mean, complex Gaussian RV with variance σ2, and X ∼ E {μ}
means that X is an exponential RV with mean μ.

II. SYSTEM MODEL

The system model is shown in Fig. 1. We consider a primary

network with a primary transmitter T that communicates to a

primary receiver X . Both T and X are equipped with a single

antenna. An underlay secondary network shares spectrum with

this primary network. A secondary source S transmits data to

a secondary destination D using L single-antenna DF relays

R1, . . . , RL. S and D are equipped with NS and ND antennas,

respectively. Let Sj and Dk denote the jth antenna of S and
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Fig. 1. Multiple-relay cognitive MIMO network with multiple antennas at
the source and destination.

the kth antenna of D, respectively, for 1 ≤ j ≤ NS and

1 ≤ k ≤ ND.

The complex baseband channel gain from Sj to Ri is hSjRi
,

from Ri to Dk is hRiDk
, from Sj to X is gSjX , and from

Ri to X is gRiX . We assume that the direct link between

S and D is not available due to heavy shadowing or severe

path loss. We consider Rayleigh fading and assume that the

channel gains of the various links are mutually independent.

The antennas at S are collocated, and so are the antennas

at D. Hence, the channel gains from S to a specific relay

are assumed to be identically distributed, and so are the

channel gains from S to X and from a given relay to D.

However, the channel gains hSjR1 , . . . , hSjRL
from Sj to

different relays are non-identically distributed. So are the

channel gains hR1Dk
, . . . , hRLDk

and gR1X , . . . , gRLX . This

corresponds to a practical scenario where the relays are geo-

graphically separated apart. Therefore, hSjRi
∼ CN (0, μSRi

),
hRiDk

∼ CN (0, μRiD), gSjX ∼ CN (0, μSX), and gRiX ∼
CN (0, μRiX), for 1 ≤ i ≤ L, 1 ≤ j ≤ NS , and 1 ≤ k ≤ ND,

where μSRi
, μRiD, μSX , and μRiX denote the respective

mean channel power gains.

A. Data Transmission Protocol

S transmits data to D via a selected relay. A transmit

antenna of S and a receive antenna of D are also selected.

This selection happens prior to data transmission by S. If a

relay Ri is selected, then in the first time slot, S transmits a

data symbol by its selected antenna Sj with a transmit power

PSj , and the selected relay Ri listens, where j ∈ {1, . . . , NS}
and i ∈ {1, . . . , L}. In the second time slot, the DF relay

Ri retransmits the decoded symbol with a transmit power

PRi
, and D receives it using the selected antenna Dk, where

k ∈ {1, . . . , ND}.

The interferences at Ri and D due to primary transmissions

are assumed to be Gaussian, as in [5], [6]. This assumption

is justified even with one primary transmitter when it trans-

mits a constant amplitude signal or transmits the orthogonal

frequency division multiplexing signal [6]. It is justified with

many primary transmitters by the central limit theorem. This

is also valid when the interference seen at the relays and D is

negligible [8]. Therefore, the instantaneous end-to-end SINR

at D for DF relaying is defined as min
{
γSjRi

, γRiDk

}
[5],

where the SINR of the link between Sj and Ri is γSjRi =
PSj |hSjRi |2/

(
σ2
0 + σ2

Ri

)
and the SINR of the link between

Ri and Dk is γRiDk
= PRi

|hRiDk
|2/ (σ2

0 + σ2
D

)
. Here, σ2

0 is

the variance of the Gaussian noise at the relays and D, and
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σ2
Ri

and σ2
D are the variances of the interference at Ri and D,

respectively, due to primary transmissions.

B. CSI Model

A relay Ri is assumed to know the instantaneous channel

power gains of |hRiDk
|2, for 1 ≤ k ≤ ND, perfectly. It

can estimate them by using a training protocol and exploiting

channel reciprocity [6]. Similarly, S is assumed to know the

instantaneous channel power gains of |hSjRi
|2, for 1 ≤ i ≤ L

and 1 ≤ j ≤ NS , perfectly.

In order to model noisy or imperfect CSI of the interference

links, we adopt the following model [11], [12]. Let xp denote

the pilot symbol transmitted by the primary receiver X . Ex-

ploiting channel reciprocity, the signal received by the antenna

Sj is given by ySj =
√
PpgSjXxp + nSj + αSj , where Pp

is the pilot transmit power, |xp|2 = 1, and nSj
∼ CN(0, σ2

0)
is the Gaussian noise at Sj . The interference at Sj due to

transmissions by T is αSj
. This is assumed to be Gaussian, as

justified before. Therefore, αSj
∼ CN(0, σ2

S). Furthermore,

gSjX ∼ CN(0, μSX) and is independent of nSj and αSj .

The minimum mean square error (MMSE) estimate ĝSjX

for gSjX is then given by ĝSjX =

√
PpμSXx∗

pySj

PpμSX+(σ2
0+σ2

S)
=

ρSgSjX + wSj
, where ρS =

PpμSX

PpμSX+(σ2
0+σ2

S)
and wSj

=√
PpμSXx∗

p(nSj
+αSj )

PpμSX+(σ2
0+σ2

S)
∼ CN

(
0,

Ppμ
2
SX(σ2

0+σ2
S)

(PpμSX+(σ2
0+σ2

S))
2

)
is the

channel estimation error [12]. Since wSj
is independent of

gSjX , it can be shown that ĝSjX ∼ CN (0, μ̂SX), where

μ̂SX = ρ2SE
[|gSjX |2] + E

[|wSj |2
]

= ρSμSX . Similarly,

for relay Ri, the MMSE estimate ĝRiX for gRiX satisfies

ĝRiX ∼ CN (0, μ̂RiX), where μ̂RiX = ρiμRiX and ρi =
PpμRiX

PpμRiX
+(σ2

0+σ2
Ri

)
.

C. Interference Outage Constraint and Power Control

It is not possible to meet a peak interference power con-

straint with imperfect CSI. Instead, we consider an interference

outage constraint, which requires that the interference power

at the primary receiver due to secondary transmissions cannot

exceed a threshold Ith beyond a fraction of time po [12]. This

is a generalization of the peak interference constraint, which

corresponds to po = 0. Let ISjX = PSj |gSjX |2 denote the

instantaneous interference power at X due to transmissions

by Sj . Then, the interference outage constraint is given by

Pr
(
ISjX ≤ Ith

) ≥ 1 − po. Similarly, let IRiX = PRi
|gRiX |2

denote the instantaneous interference power at X due to

transmissions by Ri. The corresponding interference outage

constraint is given by Pr(IRiX ≤ Ith) ≥ 1− po.

We consider the following power control policy in which

Sj sets its transmit power PSj as a function of the estimated

channel power gain |ĝSjX |2 as PSj
= min

{
Pmax,

Ith

τS |ĝSjX
|2
}

,

where Pmax is the peak transmit power of S and Ith is the

peak interference threshold. Here, τS (≥ 1) is the source

power back-off factor that is chosen in order to satisfy the

interference outage constraint with equality [8]. The power

back-off factors for all the antennas of S are identical be-

cause the channel gains from the different source antennas

to relay Ri are assumed to be statistically identical, and

so are the channel gains from the different source antennas

to X . Similarly, the transmit power PRi of relay Ri is

PRi
= min

{
Pmax,

Ith

τi|ĝRiX
|2
}

, where τi (≥ 1) is the power

back-off factor for relay Ri that is chosen in order to satisfy

the interference outage constraint with equality.

D. ORAS Scheme

For the above transmit power control policy, we propose the

optimal relay and antenna selection scheme that maximizes the

end-to-end SINR of the secondary network. By it, the index

i∗ of the selected relay, the index j∗ of the selected transmit

antenna at S, and the index k∗ of the selected receive antenna

at D are jointly determined by

(i∗, j∗, k∗) = argmax
1≤i≤L, 1≤j≤NS , 1≤k≤ND

min
{
γSjRi

, γRiDk

}
.

(1)

The ORAS scheme can be implemented as follows:

• Step 1: S first computes the maximum SINR Ui =
max

1≤j≤NS

γSjRi
of the link between S and Ri, for 1 ≤ i ≤

L. Ri computes the maximum SINR Vi = max
1≤k≤ND

γRiDk

of the link between Ri and D, and feeds back to S, for

1 ≤ i ≤ L.

• Step 2: S then computes the end-to-end maximum SINR

Zi = min {Ui, Vi}, for 1 ≤ i ≤ L. Using this, it selects

the relay index i∗ = argmax
1≤i≤L

Zi and the transmit antenna

index j∗ = argmax
1≤j≤NS

γSjRi∗ . It broadcasts the index i∗ to

all the relays, and Ri∗ selects the receive antenna index

k∗ = argmax
1≤k≤ND

γRi∗Dk
of D.

Note that Ri needs to feedback only one value Vi instead of

the SINRs γRiDk
, for 1 ≤ k ≤ ND. This reduces the total

amount of feedback required by Ri, for 1 ≤ i ≤ L.

III. OUTAGE PROBABILITY ANALYSIS

We now analyze the outage probability of the secondary

network for the ORAS scheme with imperfect CSI.

A. Computing Power Back-off Factors τS and τi

We first derive τS and τi in terms of the system parameters.

Lemma 1: The probability ISj that no interference outage

occurs due to transmissions by any source antenna Sj , for

j ∈ {1, . . . , NS}, is given by

ISj
= 1−e

− η
μSX Q1

(√
2η

τSρSλS
,

√
2ρSη

λS

)
+
1

2

(
1 +

c2
c3

)

× e−
c1c4

2

2 I0
(√

τSc4
2
)− c2

c3
Q1

(
c4

√
c1 − c3

2
, c4

√
c1 + c3

2

)
,

(2)

where η = Ith/Pmax, λS = (1− ρS)μSX , c1 = 1 + τS +
(1− ρS) /ρS , c2 = 1− τS +(1− ρS) /ρS , c3 =

√
c12 − 4τS ,

c4 =
√
2η/ (τSλS), I0(·) is the zeroth-order modified Bessel

function of the first kind [13, (8.431.1)], and Q1(a, b) denotes

the first-order Marcum Q-function [14, (4.34)]. The probability

Authorized licensed use limited to: Linkoping University Library. Downloaded on July 03,2021 at 13:12:42 UTC from IEEE Xplore.  Restrictions apply. 



IRi
that no interference outage occurs due to transmissions by

relay Ri is the same as (2) except that τS , ρS , μSX , and λS

are replaced by τi, ρi, μRiX , and λi, respectively, where λi =
(1− ρi)μRiX , and ρS and ρi are as defined in Section II-B.

Proof: The proof is relegated to Appendix A.

Since τS and τi are the solutions of the equations ISj
= 1−

po and IRi
= 1−po, respectively, they can be easily computed

using routines such as fsolve in Matlab. We note that ISj

is identical for all j ∈ {1, . . . , NS} but IRi is different for all

i ∈ {1, . . . , L}. Equation (2) reveals the dependence of τS on

the parameters Pp, po, μSX , and η. Similarly, τi depends on

the parameters Pp, po, μRiX , and η. Therefore, only statistical

channel knowledge is required to determine τS and τi.

B. Exact Outage Probability Analysis

We now derive the outage probability given τS and τi, for

1 ≤ i ≤ L. The end-to-end SINR γe2e for the ORAS scheme

is given by γe2e = max
1≤i≤L

Zi. The outage probability Op is

defined as Op = Pr(γe2e ≤ γth), where γth = 22r − 1 and r
is the secondary target rate [8]. For notational simplicity, we

define σ2
i � σ2

0 + σ2
Ri

and σ2 � σ2
0 + σ2

D.

Result 1: The outage probability Op of the secondary

network for the ORAS scheme under imperfect CSI is given

by

Op =
L∏

i=1

1−
(
1−

[
1− e

− σ2
i γth

PmaxμSRi

×
⎛
⎝1− e

− Ith
PmaxτSρSμSX

1 +
IthμSRi

σ2
i γthτSρSμSX

⎞
⎠
⎤
⎦
NS
⎞
⎟⎠

×
⎛
⎝1−

⎡
⎣(1− e

− σ2γth
PmaxμRiD

)ND (
1− e

− Ith
PmaxτiρiμRiX

)

+

ND∑
l=0

(
ND

l

)
(−1)l

e
− Ith

Pmaxτi

(
1

ρiμRiX
+

σ2γthlτi
IthμRiD

)

1 +
σ2γthlτiρiμRiX

IthμRiD

⎤
⎥⎦
⎞
⎟⎠ . (3)

Proof: The proof is relegated to Appendix B.

C. Asymptotic Outage Probability for High SINR

For notational simplicity, let σ2
i = σ2, for 1 ≤ i ≤ L. We

define γP = Pmax/σ
2 and γI = Ith/σ

2. Let γP denote the

secondary system SINR [5]. In order to gain more insights

about system performance, we focus on γP → ∞, and con-

sider the practical scenario where Ith is fixed and independent

of Pmax, as considered in the literature [5], [9].

Corollary 1: In the high SINR regime when γI is fixed and

as γP → ∞, Op in (3) can be shown to be

Op →
L∏

i=1

1−
[
1−

(
γthτSρSμSX

γthτSρSμSX + γIμSRi

)NS
]

×
⎡
⎣1−ND∑

l=0

(
ND

l

)
(−1)l

1− γI

γP τi

(
1

ρiμRiX
+ γthlτi

γIμRiD

)
1 +

γthlτiρiμRiX

γIμRiD

⎤
⎦ . (4)

It is worth noting from (4) that Op saturates for higher

values of γP and no diversity gain can be achieved due to

the fixed interference power constraint. This result is valid for

practical CR networks where X can only tolerate a limited

amount of interference from S and relays. However, when

the peak interference power Ith is proportional to the peak

transmit power Pmax, full diversity order of Lmin {NS , ND}
can be achieved. We skip this result due to space constraint.

D. Special Cases

1) Perfect CSI: In this case, S and the relays have perfect

CSI of the interference links. Therefore, ĝSjX = gSjX and

ĝRiX = gRiX , for 1 ≤ j ≤ NS and 1 ≤ i ≤ L. This arises

when Pp → ∞, which corresponds to ρS = ρi = 1, for

1 ≤ i ≤ L. Then, from the definitions of PSj
and PRi

in

Section II-C, we note that the peak interference constraint at

X due to the source and relay transmissions is always satisfied.

Therefore, po = 0, τS = τi = 1. Substituting these values of

τS , τi, ρS , and ρi in (3) and (4), we get the expressions for

the exact and the asymptotic outage probability, respectively.

2) Mean value (MV)-based CSI: In this case, S and the

relays have only the statistical knowledge of the interference

links, which can considerably reduce the feedback burden as

compared to obtaining the instantaneous CSI [8]. Specifically,

S knows μSX and relay Ri knows μRiX . The corresponding

expressions for the outage probability can be shown to be

Op =

L∏
i=1

1−
⎡
⎣1−

(
1− e

− γthσ
2
i

PSj
μSRi

)NS
⎤
⎦

×
⎡
⎣1−

(
1− e

− γthσ
2

PRi
μRiD

)ND
⎤
⎦ , (5)

where PSj
= min

{
Pmax,

Ith

− ln(po)μSX

}
and PRi

=

min
{
Pmax,

Ith

− ln(po)μRiX

}
, for 1 ≤ j ≤ NS and 1 ≤ i ≤ L.

IV. NUMERICAL RESULTS

In order to verify our analysis, we now present Monte Carlo

simulation results. To generate the plots, we vary the secondary

system SINR γP . The average channel power gains of the

various links are kept fixed, and are set to μXY = d−β
XY ,

where dXY denotes the distance between the transmitting node

X and the receiving node Y , and β denotes the path loss

exponent. We set β = 4, the target rate r = 1 bps/Hz, and the

2D position of S, D, X , R1, R2, and R3 as (0, 0), (1, 0), (1,

1), (1/4, 1/4), (1/2, 1/2), and (3/4, 3/4), respectively.

Fig. 2 plots Op for two different values of γI and po. We

see that for low values of γP , as γP increases, the outage

probability deceases and reaches a minimum value. This is

because in this regime, the interference power constraint is

inactive and the transmit powers of S and the selected relay

become Pmax more often. Therefore, as Pmax increases, Op

decreases. For medium-to-high values of γP , as γP increases,

Op increases. This is because in this regime, the interference

power constraint becomes active and, consequently, the power
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back off factors τS and τi increase from unity. This reduces

the allowable transmit powers of S and the selected relay,

which increases Op. For sufficiently high values of γP , the

values of τS and τi become independent of γP , and so are the

transmit powers of S and the selected relay, which results

Op saturation. Note that for fixed γI , as po increases, Op

decreases because the interference outage constraints become

more relaxed. For fixed po, as γI increases, Op decreases.

Fig. 3 plots Op for three different values of NS , ND, and

L. An excellent agreement between the analytical results and

simulations is observed, and the asymptotic curves track the

analytical results well. We observe similar trends as that of

Fig 2. As expected, the outage probability decreases as the

number of relays, or the number of antennas increase due

to the increased spatial diversity. We also compare with the

partial relay and antenna selection (PRAS) scheme proposed

in [10]. It first selects a transmit antenna at S and a relay to

maximize the SINR of the source-relay links, and then selects

a receive antenna at D to maximize the SINR of the selected

relay-destination links. In PRAS, Vi does not need to be fed

back to S by Ri. However, it suffers from a significant loss

in the outage probability compared to the proposed ORAS

scheme.

Fig. 4 plots Op under imperfect CSI for three values of

Pp/σ
2. We see that as Pp/σ

2 increases, Op decreases because

the channel estimates become more perfect. For comparison,

it also plots Op under perfect CSI and MV-based CSI. As
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Fig. 4. Impact of different CSI availability (r = 2 bps/Hz, po = 0.01,
γI = 15 dB, NS = 4, ND = 5, and L = 3).

expected, for the entire range of γP considered, the minimum

value of Op is obtained with perfect CSI. In this case, as

γP increases, Op decreases for low-to-mid values of γP , in

which S and the selected relay set their transmit powers equal

to Pmax more often. For higher values of γP , their transmit

powers are limited by the peak interference power constraint,

which limits Op. The trends for MV-based CSI is similar to

that of the perfect CSI. Unlike the case with imperfect CSI,

τS and τi remain constant for a given po, which results Op

saturation for medium-to-high values of γP . We see that it

performs worst for low-to-mid values of γP . However, for

γP > 13.5 dB, it outperforms the imperfect CSI case with

Pp/σ
2 = 5 dB. This explains the advantage of the MV-based

CSI as compared to the imperfect CSI for high SINRs as a

better performance/complexity tradeoff.

V. CONCLUSIONS

We proposed an ORAS scheme for the multiple-relay cog-

nitive MIMO network under imperfect CSI of the interference

links. In it, the source and the selected relay sufficiently

backed-off their transmit powers in order to meet the inter-

ference outage constraint. For this, we derived closed-form

expressions for the exact and asymptotic outage probability.

We saw that under the fixed interference power constraint, the

outage probability saturated for higher values of SINR, which

can be reduced by increasing either the number of antennas at

S or D, or the number of relays. We also derived an expression

for the outage probability when the SUs had only the mean

channel power gains of the interference links, and showed that

this can be used as a better performance/complexity tradeoff.

APPENDIX

A. Proof of Lemma 1
The probability ISj

that no interference outage occurs due

to transmissions by Sj is given by

ISj
= Pr

(
min

{
Pmax,

Ith

τS |ĝSjX |2
}
|gSjX |2 ≤ Ith

)
= T1+T2,

(6)

where T1 = Pr
(
|gSjX |2 ≤ η, |ĝSjX |2 ≤ η

τS

)
and T2 =

Pr
(
|gSjX |2 ≤ τS |ĝSjX |2, |ĝSjX |2 > η

τS

)
. We now evaluate T1

and T2 separately.
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1) Evaluating T1: Using conditional CDF, T1 can be rewrit-

ten as T1 = 1
ρSμSX

η/τS∫
0

F|gSjX
|2
⏐⏐|ĝSjX

|2(η|y) e
− y

ρSμSX dy.

Note that |gSjX | and |ĝSjX | are correlated RVs, and |gSjX |2∼
E{μSX} and |ĝSjX |2 ∼ E{ρSμSX}. Using the bivariate

Rayleigh joint PDF of |gSjX | and |ĝSjX | from [14, (6.2)],

the conditional CDF F|gSjX
|2
⏐⏐|ĝSjX

|2(x|y) can be shown as

F|gSi|2
⏐⏐|ĝSjX

|2(x|y) = 1−Q1

(√
2y

λS
,

√
2x

λS

)
, (7)

where λS = (1− ρS)μSX and Q1(a, b) denotes the first-order

Marcum Q-function [14, (4.34)].
Substituting (7) in the above expression for T1, and using

the variable transformation
√
y = t and the identity in [15,

(37)], we can show that

T1 = 1− e
− η

τSρSμSX

(
1−Q1

(√
2η

τSλS
,

√
2η

λS

))

− e
− η

μSX Q1

(√
2η

τSρSλS
,

√
2ρSη

λS

)
. (8)

2) Evaluating T2: Similarly, T2 can be rewritten as

T2 = 1
ρSμSX

∞∫
η/τS

(
1−Q1

(√
2y
λS

,
√

2τSy
λS

))
e
− y

ρSμSX dy.

Using the variable transformation
√
y = t and the identity

in [15, (55)], we can show that

T2 = e
− η

τSρSμSX (1−Q1(c4,
√
τSc4))+

1

2

(
1+

c2
c3

)
e−

c1c4
2

2

× I0
(√

τSc4
2
)− c2

c3
Q1

(
c4

√
c1 − c3

2
, c4

√
c1 + c3

2

)
, (9)

where c1, c2, c3, and c4 are defined in the Lemma state-

ment. Substituting (8) and (9) in (6) and simplifying further

yields (2).
The derivation for IRi is along similar lines, and is skipped.

B. Proof of Result 1
Since Z1, . . . , ZL are independent RVs and Ui is indepen-

dent of Vi, Op simplifies to

Op =

L∏
i=1

FZi(γth) =

L∏
i=1

1− (1− FUi(γth)) (1− FVi(γth)) .

(10)
1) Evaluating FUi

(γth): Since γS1Ri
, . . . , γSNS

Ri
are i.i.d.

RVs, FUi
(γth) =

(
FγSjRi

(γth)
)NS

. The CDF of γSjRi
can be

written as

FγSjRi
(γth) =

1

μSRi

∞∫
0

FPSj

(
σ2
i γth

α

)
e
− α

μSRi dα, (11)

where the CDF of PSj
can be shown to be

FPSj
(x) =

{
e
− Ith

xτSρSμSX , x ≤ Pmax,

1, x > Pmax.
(12)

Substituting (12) in (11) and simplifying further, we get the

CDF of Ui by the term [.]NS in (3).

2) Evaluating FVi
(γth): From the definition of PRi

in

Section II-C, we note that conditioned on |ĝRiX |2, the RVs

γRiD1 , . . . , γRiDND
are i.i.d. Therefore, the CDF of Vi is

FVi
(γth) =

∞∫
0

Pr
(
Vi ≤ γth

⏐⏐⏐|ĝRiX |2 = y
) e

− y
ρiμRiX

ρiμRiX
dy. (13)

Using the law of total probability, the conditional probability

term in (13) can be written as Pr
(
Vi ≤ γth

⏐⏐⏐|ĝRiX |2 = y
)
=(

1−e
− σ2γth

PmaxμRiD

)ND

1{
y≤ Ith

τiPmax

}+
(
1−e

−σ2γthτiy

IthμRiD

)ND

1{
y>

Ith
τiPmax

}.

Substituting this in (13) and by using binomial expansion, we

get the CDF of Vi by the second [.] term in (3).
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