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Abstract—Intelligent reflecting surface (IRS), which uses pas-
sive reflective elements instead of active radio frequency (RF)
chains, is a cost and energy-efficient solution to improve the
wireless system performance. With a similar objective, transmit
antenna selection (AS) reduces the number of RF chains at the
base station while harnessing the benefits of multiple antennas.
In our work, we focus on joint optimization of antenna subset
and transmit beamforming at the base station, and passive
beamforming at the IRS to maximize the receive signal power.
For single AS, we first derive a closed-form optimal rule. We
then propose a simpler AS rule, which significantly reduces the
computational complexity and the number of pilot transmissions
required. For a system with Nt antennas at the base station
and N IRS elements, the optimal AS rule requires Nt + NtN
pilots. However, the proposed simpler rule requires only 2Nt+N
pilots. For subset AS, we develop a manifold optimization based
algorithm. To reduce its subset search complexity, which is
exponential in the number of RF chains at the base station, we
propose an alternating optimization based iterative algorithm.
Our numerical results show that the proposed simpler AS rules
are near optimal.

Index Terms—Intelligent reflecting surface, antenna selection,
beamforming, manifold optimization, alternating optimization.

I. INTRODUCTION

Intelligent reflecting surface (IRS) is being envisioned as a

key technology for the sixth generation (6G) wireless com-

munication systems to achieve a smart radio environment [1],

[2]. The current 5G technologies that are based on large

antenna arrays and the use of high frequencies would need

a large number of expensive radio frequency (RF) chains.

These RF chains consist of amplifiers, mixers, filters, and

signal converters [3]. Instead, IRS consists of low-cost passive

reflective elements such as printed dipoles [4], [5]. Hence, it

improves energy and cost-efficiency. Each passive reflecting

element of the IRS is capable of inducing a known phase shift,

which can be programmed by a controller, to the incident

electromagnetic wave. It enables passive beamforming to

improve the receive signal power.

Similar to IRS, transmit antenna selection (AS) is a tech-

nology that improves energy and cost-efficiency by reducing

the number of RF chains at the transmitter. In it, a transmitter

selects a subset of antennas and connects them to the available

RF chains, which are smaller in number than the antenna

elements. AS achieves full diversity with fewer RF chains.

It is part of wireless standards such as Long-Term Evolution

and 802.11n [3]. In our work, we focus on AS at the base
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Fig. 1. System model that consists of a base station, which is equipped with
Nt antennas and NRF RF chains, communicating to a single antenna user
with the help of an N element IRS.

station (BS) assisted by passive beamforming at the IRS to

improve the performance with low hardware cost.

Joint transmit beamforming at the BS and the passive

beamforming at the IRS is studied extensively in the liter-

ature [4]–[8]. To minimize the transmit power at the BS, a

local optimal solution is developed in [8] using an alternating

optimization technique. Different optimization techniques are

studied in [4]–[7] to maximize the receive signal power. A

fixed point iteration method is proposed in [7] and a semi-

definite relaxation (SDR) based technique, which yields an ap-

proximate solution, is proposed in [6]. A conjugate-gradient-

based manifold optimization technique, which improves per-

formance compared to SDR based technique, is developed

in [4]. It converges to a local optimum solution. Furthermore,

a branch-and-bound (BnB) algorithm, which converges to

the global optimal solution, is presented in [5]. It is also

shown that the performance of the manifold optimization

based algorithm is near optimal with lower complexity. Most

of these works assume that the channel state information (CSI)

is available at both the BS and IRS, which is practically

challenging due to the passive nature of the IRS elements.

Furthermore, they focus on the transmit beamforming at the

BS, which needs number of RF chains equal to the number of

antennas. To the best of our knowledge, jointly optimal AS at

the BS and passive beamforming at the IRS is not studied in

the literature. However, a sub-optimal AS rule that selects a

single antenna with the highest channel power gain from the

BS to IRS is considered in [9].

A. Focus and Contributions

We focus on an IRS assisted communication system with a

multiple antenna base station that employs AS and communi-

cates to a single antenna user. Our objective is to develop
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a jointly optimal subset antenna selection, transmit beam-

forming at the BS, and passive beamforming at the IRS to

maximize the receive signal power. Our problem formulation

is novel and practical in the following aspects. Firstly, joint AS

and beamforming is not studied for an IRS assisted system in

the literature and the optimal AS rule is not known. Secondly,

unlike [4]–[6], we do not assume any CSI at the IRS. Thirdly,

our AS rule design reduces the number of pilots required.

Contributions
i) Single AS: We derive an optimal AS rule that selects

the jointly optimal antenna at the BS and optimal reflection

coefficient of each IRS element. We show that the optimal

antenna and reflection coefficient are decoupled in nature.

We then propose a simpler yet near-optimal AS rule that

significantly reduces the number of pilot transmissions.

ii) Subset AS; We develop a manifold optimization based

algorithm that jointly finds an antenna subset, transmit beam-

forming at the BS, and passive beamforming at the IRS. It

searches over all possible subsets to find the optimal subset.

To reduce this search complexity, we propose a subset AS

algorithm that uses the alternating optimization technique.

iii) Numerical Results: Our results show that for a given

number of RF chains at the BS, an increase in the number

of antennas at the BS or the passive elements at the IRS

improves system performance significantly. They also show

that the proposed low-complexity AS rules are near optimal.

Outline: Section II presents our system model and problem

statement. AS rules are developed in Section III. Numerical

results are presented in Section IV. Our conclusions follow in

Section V.

Notations: Scalars are denoted by lower-case letters. Vec-

tors and matrices are denoted by boldface lower-case and

capital letters, respectively. C
m×n denotes the set of all

complex-valued matrices of size m × n and j =
√−1.

|a|, arg(a), and a∗ denote the absolute value, phase, and

conjugate, respectively, of a complex number a. ‖x‖, x†, and

[x]n denote the 2-norm, conjugate transpose, and nth element

of vector x.

II. SYSTEM MODEL

Our system model is shown in Figure 1. It consists of a BS

that is equipped with Nt antennas and NRF ≤ Nt number of

RF chains. It communicates to a single antenna user with the

help of an IRS equipped with N passive reflective elements

and a controller. The BS dynamically selects NRF antennas

from the set of antennas {1, 2, . . . , Nt}, connects them to the

RF chains available, and performs transmit beamforming. The

IRS controller receives the reflection coefficients from the BS

through a dedicated control link. It programs the reflectors

to perform passive beamforming. We assume a quasi-static

flat-fading channel model [4], [6]. Furthermore, we consider

a time-division duplexing (TDD) mode of operation to exploit

reciprocity and reduce CSI feedback overhead.

Let h†
r =

[
h∗
r,n

] ∈ C
1×N denote the complex base-

band channel gain vector from the IRS to the user. Let

h†
d =

[
h∗
d,k

]
∈ C

1×Nt and G = [gnk] ∈ C
N×Nt denote

the complex channel gain vector from the BS to the user

and complex channel gain matrix from the BS to the IRS,

respectively. Let S denote the set of all possible subsets

of set {1, 2, . . . , Nt} each containing NRF elements. Let

S ∈ S denote a subset containing indices of NRF antennas

selected. Let h†
d,S ∈ C

1×NRF denote the channel gain vector

from the BS to the user corresponding to the subset S and

GS ∈ C
N×NRF denote the sub-matrix that contains columns

of G corresponding to the antenna indices in S. The reflection

coefficient of nth IRS element is denoted by xn = βejθn ,

where θn ∈ [0, 2π] and β ∈ [0, 1] are its phase shift

and reflection loss. Let x = [x1, . . . , xN ]† be the passive

beamforming vector at the IRS and w = [wk] ∈ C
NRF×1

denote the transmit beamforming vector at the BS.

The BS transmits data symbol d using a subset of antennas

in S. Then the user receives a signal h†
d,Swd through the

direct link (BS → user). The signal transmitted from antenna

k and reflected through the nth IRS element, which applies

a reflection coefficient xn, observes a cascaded channel

h∗
r,nxngnk. Hence, the user receives h∗

r,nxngnkwkd through

the reflected link (BS → IRS → user). The composite signal

received through all the selected antennas and all the IRS

elements is given by
∑N

n=1 h
∗
r,nxn [GSw]n d, where [GSw]n

denotes the nth element of the vector GSw. It can be

written as x† diag
(
h†
r

)
GSwd, where diag

(
h†
r

)
denote the

diagonal matrix with elements of h†
r as its diagonal elements.

Therefore, the signal y received at the user through the direct

and reflected links is given by

y = (h†
d,S + x†HrGS)wd+ z, (1)

where Hr = diag
(
h†
r

)
and z denote the additive white

Gaussian noise at the user with zero mean and variance σ2.

CSI Assumptions and Acquisition Procedure [10], [11]: We

assume that the BS knows direct link channel gain vector

h†
d and cascaded channel gain matrix HrG of the reflected

link. The user sends pilot symbols and the BS estimates these

channel gains in a two-phase method. In the first phase, the

IRS is turned off and the BS estimates direct link channel

gains. In the second phase, the IRS is turned on and the BS

estimates the sum of the direct link and reflected link channel

gain. This can be done by either turning on only one IRS

element at a time [10] or turning all of them on and using

rows of a discrete Fourier transform (DFT) matrix as passive

beamforming vectors [11]. Individual channel gains of the BS

to IRS and the IRS to user links, which are difficult to obtain

due to the passive nature of the IRS, are not needed at the BS.

Furthermore, no CSI is assumed at the IRS. The BS computes

the passive beamforming vector x based on this CSI acquired

and communicates to the IRS controller through a control link.

A. Problem Statement

We now state our problem formally. From (1) the instanta-

neous signal-to-noise ratio (SNR) at the receiver, when the BS

transmits using subset S with transmit beamforming vector w
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and the IRS employs a passive beamforming vector x is given

by

SNR (S,w,x) =
∣∣∣(h†

d,S + x†HrGS)w
∣∣∣2/σ2. (2)

Let R (S,w,x) denote the instantaneous rate. It is given by

R (S,w,x) = log2 (1 + SNR (S,w,x)) . (3)

Similarly, the symbol error probability (SEP), which we

denote by SEP (S,w,x), is given by [12, eq. (14)]

SEP (S,w,x) = c1 exp (−c2SNR (S,w,x)) , (4)

where c1 and c2 are modulation specific constants. From

above, we see that maximizing instantaneous signal power

maximizes rate and minimizes SEP. Thus, our objective is to

maximize signal power at the receiver.
Constraints: The BS is subject to peak transmit power

constraint. It limits the total instantaneous transmit power

from the NRF antennas selected to be below the maximum

total transmit power Pmax allowed, i.e., ‖w‖2 ≤ Pmax. We

set β = 1 as our goal is to maximize the signal power. Hence,

the modulus of each reflection coefficient at the IRS should

be one, i.e., |xn| = 1, ∀n, which in general is referred to as

unit modulus constraint.
Optimization Problem: Our goal is to jointly solve for a

subset of antennas S, transmit beamforming vector w at the

BS, and passive beamforming vector x at the IRS to maximize

receive signal power subject to peak transmit power constraint

at the BS and unit modulus constraint of IRS reflection coeffi-

cients. The optimization is over a space of discrete sets of size

NRF , complex vectors
{
w ∈ C

NRF×1 : ‖w‖2 ≤ Pmax

}
, and{

x ∈ C
N×1 : |x1| = 1, . . . , |xN | = 1

}
. Optimization problem

can be written as

P : max
S,w,x

∣∣∣(h†
d,S + x†HrGS)w

∣∣∣2 , (5)

s.t. ‖w‖2 ≤ Pmax, (6)

|xn| = 1, ∀ n = 1, . . . , N. (7)

The above problem P is non-convex as the objective

function is non-concave and unit-modulus constraint is non-

convex. To the best of our knowledge, there is no simple

tractable solution to this problem. In the next section, we shall

propose low complexity yet near-optimal solutions for P .

III. ANTENNA SELECTION WITH IRS

In this section, we first derive the optimal solution of P
for a single antenna selection (NRF = 1) scenario. We then

develop a manifold optimization based algorithm for subset

antenna selection (NRF > 1). For both scenarios, we also

propose AS rules that significantly reduce the computational

complexity and number of pilot transmissions.

A. Single Antenna Selection (NRF = 1)
Let s ∈ {1, 2, . . . , Nt} denote the index of the antenna

selected. Here, the received signal y in (1) reduces to

y =

(
h∗
d,s +

N∑
n=1

h∗
r,ngnsxn

)
wsd+ z. (8)

1) Optimal AS rule: We first present the optimal AS rule.

Result 1: For an IRS assisted communication system with

single antenna selection at the BS, the optimal antenna sopt, its

transmit power wsopt
, and optimal passive reflection coefficient

xn,opt are given by

sopt = argmax
k∈{1,2,...,Nt}

{
|hd,k|+

N∑
n=1

∣∣h∗
r,ngnk

∣∣} , (9)

xn,opt = exp
(
j
[
arg

(
h∗
d,sopt

)
− arg

(
h∗
r,ngnsopt

)])
, ∀ n,

(10)

wsopt
=

√
Pmax. (11)

Proof: The proof is given in Appendix A.

Insights: The selection metric of each antenna is the sum

of the absolute values of the direct link and the N reflected

link channel gains. The optimal antenna is the one with the

highest selection metric. The optimal reflection coefficient of

each IRS element is the difference between the phase of the

direct link and the reflected link. Optimal antenna depends

only on the absolute values of the channel gains, whereas the

optimal reflection coefficient depends only on their phases.

We see a decoupled structure between them.

Number of Pilot Transmissions Required and Computa-
tional Complexity: Here, the BS has only one RF chain,

which it switches to each antenna, to estimate the channel

gains. Hence, the user needs to transmit Nt pilots in the first

phase to estimate direct link channel gains and NtN pilots

in the second phase to estimate reflected link channel gains.

In total, we need Nt + NtN pilots. Furthermore, we need

O(NtN) computations to select the optimal antenna and its

reflection coefficients.

2) Low-Complexity AS (LAS) Rule: We now propose an

AS rule that reduces the number of pilot transmissions and the

computations required. It selects an antenna s that maximizes

the following selection metric |hd,k|+
∣∣∣∑N

n=1 h
∗
r,ngnk

∣∣∣, which

lower bounds the optimal selection metric of antenna k given

in (9). Then, the reflection coefficient is computed as per (10)

for the antenna selected. Hence, LAS rule is given by

s = argmax
k∈{1,2,...,Nt}

{
|hd,k|+

∣∣∣∣∣
N∑

n=1

h∗
r,ngnk

∣∣∣∣∣
}
, (12)

xn = exp
(
j
[
arg

(
h∗
d,s

)− arg
(
h∗
r,ngns

)])
, ∀n, (13)

and ws =
√
Pmax.

Number of Pilot Transmissions Required and Computa-
tional Complexity: Similar to optimal rule LAS rule needs

Nt pilots to obtain the direct link CSI. However, for the

reflected link CSI, for each antenna k, BS only needs to know∑N
n=1 h

∗
r,ngnk to compute the selection metric. This can be

estimated by configuring xn = 1, ∀n, and sending one pilot

from the user. Thus, the user only needs to send Nt pilots to

obtain
∑N

n=1 h
∗
r,ngnk, for k ∈ {1, 2, . . . , Nt}. Furthermore,

to compute xn, we need N reflected link channel gains

h∗
r,1g1s, . . . , h

∗
r,NgNs corresponding to the antenna selected,

which needs N pilots. Thus, we only need 2Nt + N pilots
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instead of Nt +NtN pilots required by the optimal AS rule.

Furthermore, we need O(Nt+N) computations to implement

LAS rule. Thus, LAS rule helps in practical implementation.

B. Subset Antenna Selection (NRF > 1)
Here, we first present a manifold optimization based subset

selection (MOBSS) algorithm to solve P . Then, we pro-

pose a simpler alternating optimization based subset selection

(AOBSS) algorithm.
For a given subset S and passive beamforming vector x,

optimal transmit beamforming vector wopt at the BS is given

by maximal ratio transmission (MRT). It is given by

wopt =
√
Pmax

hd,S +G†
SH

†
rx∥∥∥hd,S +G†

SH
†
rx

∥∥∥ . (14)

Substituting this in (5), yields Pmax

∥∥∥x†HrGS + h†
d,S

∥∥∥2.

Thus, for a given subset S, we can find x that maximizes the

signal power by solving the following optimization problem:

PS : max
x

∥∥∥x†HrGS + h†
d,S

∥∥∥2 , (15)

s.t. |xn| = 1, ∀ n = 1, . . . , N. (16)

The objective function in PS is quadratic in x and is con-

vex. However, the unit modulus constraint is non-convex.

Hence, standard convex optimization techniques cannot be

employed. However, the unit modulus constraint above defines

a Riemannian manifold. The optimization over a manifold is

locally analogous to the optimization in Euclidean space [4].

Hence, PS can be solved by employing manifold optimization

techniques [13]. These techniques converge to a local optimal

solution by exploiting the geometry of Riemannian manifolds.
1) MOBSS Algorithm: Here, for each S ∈ S, we solve

PS using a conjugate gradient based manifold optimization

technique [4]. We obtain passive beamforming vector zS
and corresponding signal power. This is repeated for all

possible subsets of S . Then, the optimal subset Sopt is the

one that yields maximum signal power and the optimal passive

beamforming vector xopt = zSopt
. We then compute optimal

transmit beamforming vector wopt by substituting Sopt and

xopt in (14). These steps are illustrated in Algorithm 1.

Algorithm 1 Manifold Optimization Based Algorithm

1: BS estimates Nt direct link and NtN reflected link

channel gains.

2: for all S ∈ S do
3: Obtain zS that solves PS using a conjugate gradient

based manifold optimization technique.

4: end for
5: Sopt = argmaxS∈S

{∥∥∥z†SHrGS + h†
d,S

∥∥∥2}.

6: xopt = zSopt
.

7: Compute wopt by substituting Sopt and xopt in (14).

8: return Sopt,wopt,xopt.

Number of Pilot Transmissions Required and Computa-
tional Complexity: Here, BS has NRF RF chains. Thus, we

need �Nt/NRF 	 number of pilots to estimate Nt direct link

channel gains and �Nt/NRF 	N pilots for the reflected link

channel gains. MOBSS solves PS for each S ∈ S , which con-

tains O(Nt
NRF ) elements. For each S ∈ S , it solves PS using

the conjugate gradient based manifold optimization technique,

whose worst-case complexity is O(N1.5) [4]. Hence, the

computational complexity of MOBSS is O(Nt
NRFN1.5).

2) AOBSS Algorithm: For each antenna k, this algorithm

first computes the selection metric of LAS rule in (12), i.e.,

|hd,k|+
∣∣∣∑N

n=1 h
∗
r,ngnk

∣∣∣. It then sorts them in the descending

order and selects the first NRF antennas from the sorted list

as the subset S to transmit. Then, for the selected subset

S it solves for the transmit beamforming vector wS and

passive beamforming vector xS iteratively using the alter-

nating optimization technique. w is initialized with MRT

beamforming vector in the direction of the direct link, i.e.,√
Pmaxhd,S/ ‖hd,S‖.

For a given subset S and transmit beamforming vector w,

the effective direct link channel gain from the BS to the user

is given by h†
d,Sw. Similarly, [GSw]n is the effective channel

gain from the BS to the nth IRS element. For these effective

channel gains, from (10), the optimal passive beamforming

reflection coefficient is given by

xn = exp
(
j arg

(
h†
d,Sw

)
− j arg

(
h∗
r,n [GSw]n

))
, ∀n.

(17)

For these reflection coefficients, the optimal w can be ob-

tained by substituting them in (14). We then update x by

substituting this w in (17). This iterative process is continued

till the SNR improvement is less than ε or the maximum

number of iterations M is reached. Here, in each iteration,

we optimize x for a given w and then optimize w for the

updated x. These steps are illustrated in Algorithm 2.

Number of Pilot Transmissions Required and Computa-
tional Complexity: Similar to MOBSS algorithm, we need

�Nt/NRF 	 pilots for the direct link CSI. However, we

only need �Nt/NRF 	 pilots to obtain the reflected link CSI

required to compute the selection metrics of the antennas

and N pilots to compute the IRS reflection coefficients.

This is because AOBSS algorithm uses the selection metric

of LAS rule. In total, we need 2 �Nt/NRF 	 + N pilots.

The computational complexity is O(Nt log(Nt)) to select the

subset and O(N) per iteration to compute w and x. Thus,

AOBSS algorithm reduces computational complexity and the

number of pilot transmissions required significantly compared

to the MOBSS algorithm. Table I compares the computational

complexity and number of pilot transmissions required for the

proposed algorithms and SDR algorithm in [6].

IV. NUMERICAL RESULTS

We will now study the performance of the proposed AS

rules as a function of different system parameters. We consider

a uniform linear array with half-wavelength antenna spacing at

the BS and a uniform planar array at the IRS. The BS and IRS

are placed such that there is a dominant line-of-sight (LOS)
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Algorithm 2 Alternating Optimization Based Algorithm

1: Estimate CSI required to compute the selection metrics.

2: Sort the selection metrics |hd,k| +
∣∣∣∑N

n=1 h
∗
r,ngnk

∣∣∣, for

k ∈ {1, 2, . . . , Nt} in the descending order.

3: Assign indices of the first NRF antennas in the sorted list

to subset S.

4: Estimate the reflected link CSI corresponding to the

subset S.

5: Initialize m = 0, w1 =
√
Pmaxhd,S/ ‖hd,S‖.

6: while (SNR improvement > ε) and (m ≤ M) do
7: Update m = m+ 1.

8: xn =exp
(
j arg

(
h†
d,Sw

m
)
− j arg

(
h∗
r,n [GSw

m]n
))

.

9: xm = [x1, x2, . . . , xN ].

10: wm+1 =
√
Pmax

hd,S+G†
SH†

rx
m

‖hd,S+G†
SH†

rxm‖ .

11: end while
12: wS = wm+1.

13: xn = exp
(
j arg

(
h†
d,SwS

)
−j arg

(
h∗
r,n [GSwS ]n

))
.

14: xS = [x1, x2, . . . , xN ].
15: return S, wS , and xS .

TABLE I
COMPLEXITY COMPARISON

Computational complexity Pilot transmissions
Optimal AS O(NtN) Nt +NtN
LAS O(Nt +N) 2Nt +N

MOBSS O((Nt)
NRF N1.5)

⌈
Nt

NRF

⌉
+

⌈
Nt

NRF

⌉
N

AOBSS O(Nt log (Nt) +N) 2
⌈

Nt
NRF

⌉
+N

SDR [6] O((N + 1)6) N + 1

component between them. Thus, the channel gain matrix from

the BS to the IRS is given by

G =

√
K

K + 1
GLOS +

√
1

K + 1
GNLOS, (18)

where GLOS and GNLOS denote the LOS and Non-LOS

components and K denote the Rician factor, which we set to

10. We consider independent Rayleigh fading for the direct

link from the BS to the user, for the link from the IRS to the

user, and GNLOS, Let dbi, dbu, and diu denote the distances

from the BS to IRS, BS to user, and IRS to user, respectively.

Corresponding path-losses are taken to be 16.6+22 log10(dbi),
35+30 log10(dbu), and 20+30 log10(diu), respectively.1 We

set σ2 = −80 dBm, ε = 10−4, and M = 5.

Single Antenna Selection: Figure 2 plots the average SEP

as a function of the peak transmit power Pmax for different

values of N . It compares the performance of the optimal AS

rule in Result 1 with LAS rule. The average SEP decreases as

Pmax increases as the BS is allowed to transmit with a higher

power. We see that LAS rule, which requires fewer pilots,

1These are obtained for the simplified path-loss model with a signal
attenuation of 30 dB at 1 m reference distance, a carrier frequency of
2.4 GHz, path-loss exponent of 2.2 for the link from the BS to IRS, and a
path-loss exponent of 3 for the remaining two links. Furthermore, antenna
gains at the BS, user, and IRS are taken to be 0 dB, 5 dB, 15 dB, respectively.
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Optimal AS (N
t
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t
 = 4)
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t
 = 1)

Fig. 2. Single antenna selection: Average SEP as a function of Pmax for
different number of IRS elements (NRF = 1, dbi = 40 m, dbu = 35 m,
diu = 5.4 m, and QPSK).

is near-optimal. Also, shown is the average SEP of a single

antenna system, which is significantly higher than the system

with multiple antennas and one RF chain. For example, at

Pmax = 6 dB, it is higher by a factor of 8.1 and 23.8, for

N = 25 and N = 75, respectively. Furthermore, we see a

significant reduction in the average SEP as N increases. At

Pmax = 6 dB, the average SEP of the optimal AS rule for

N = 75 is 58× lower than for N = 25.

Subset Antenna Selection: Figure 3 plots the average receive

SNR as a function of the distance between the BS and user

dbu. Here, the distance between the BS and IRS dbi is fixed

to 40 m and the user moves parallel to the line joining the BS

and IRS. We compare the SNR performance of the proposed

subset selection algorithms (Nt = 4 and NRF = 2) with

the SDR based beamforming technique that require four RF

chains [6]. Also, shown is the receive SNR when there is

no IRS, which decreases as dbu increases. With IRS, we see

that the SNR initially decreases as dbu increases and then

increases till dbu = 40 m. This happens because the user

moves closer to the IRS though it moves away from the BS,

which makes the reflected link stronger. Furthermore, the SNR

decreases for dbu > 40 m as the user moves away from both

the BS and IRS. We see that the SNR is maximum when

the user is close to the IRS. We also see that the maximum

benefit of increasing N occurs at dbu = 40 m, where SNR

increases by 6 dB by doubling the number of IRS elements.

Thus, the placement of the IRS plays a key role in the

SNR performance. Note that the simpler AOBSS algorithm

performs very close to the MOBSS algorithm. We also see

that the proposed subset selection algorithms can achieve

SNR close to the SDR based beamforming technique with

less hardware. The SNR improvement with two additional RF

chains is only 1.72 dB and 2.2 dB, for N = 50 and N = 100,

respectively, at dbu = 40 m.

Figure 4 plots the average SEP as a function of Pmax

for NRF = 2 and different values of Nt. It compares the

performance of MOBSS and AOBSS algorithms. We see that

the simpler AOBSS performs very close to MOBSS. Also,

shown is the performance of the SDR based beamforming
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Fig. 3. The receive SNR as a function of distance from the BS to the user
for different values of N (Nt = 4, Pmax = 5 dBm, and dbi = 40 m).
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Fig. 4. Average SEP as a function of Pmax for different number of antenna
elements (dbi = 40 m, dbu = 35 m, diu = 5.4 m, NRF = 2, N = 25,
and QPSK).

technique [6]. With the same number of RF chains, we see that

the antenna subset selection performs significantly better than

the transmit beamforming. For example, at Pmax = 4 dBm,

the average SEP reduces by a factor of 3.6 and 24.4 when

Nt = 4 and Nt = 8, respectively, compared to Nt = 2.

V. CONCLUSIONS

We considered AS for an IRS assisted communication

system. For it, we proposed algorithms that did joint AS,

transmit beamforming at the BS, and passive beamforming

at the IRS. For single AS, we showed that the optimal

antenna depended only on the absolute values of the channel

gains and the optimal reflection coefficient depended only

on their phases. Furthermore, they were decoupled. We also

proposed a simpler yet near-optimal LAS rule. For subset

AS, we proposed a manifold optimization based algorithm

that converges to a local optimal solution. We also proposed

a simpler subset selection algorithm based on alternating

optimization. It reduced the subset search complexity and the

number of pilot transmissions significantly. We saw that the

SNR improvement of the subset selection system is close

to the system with a complete set of RF chains. We also

showed that for a fixed number of RF chains the performance

improves significantly as the number of reflective elements at

the IRS or the antennas at the BS increase.

APPENDIX

A. Proof of Result 1

Here, to maximize the receive signal power at the user,

the BS transmits with power Pmax from the single antenna

selected. Hence, from (8), the signal power is equal to

Pmax

∣∣∣h∗
d,s +

∑N
n=1 h

∗
r,ngnsxn

∣∣∣2. Using triangle inequality,

we know that∣∣∣∣∣h∗
d,s +

N∑
n=1

h∗
r,ngnsxn

∣∣∣∣∣ ≤
∣∣h∗

d,s

∣∣+ N∑
n=1

∣∣h∗
r,ngnsxn

∣∣ , (19)

where equality is achieved when h∗
r,ngnsxn, ∀n are

phase aligned with the direct link channel h∗
d,s, i.e.,

arg
(
h∗
r,ngnsxn

)
= arg

(
h∗
d,s

)
. Thus, for antenna s, the

maximum signal power is achieved when

arg (xn) = arg
(
h∗
d,s

)− arg
(
h∗
r,ngns

)
, ∀n, (20)

which is equal to Pmax

(∣∣∣h∗
d,s

∣∣∣+∑N
n=1

∣∣h∗
r,ngns

∣∣)2

. There-

fore, the optimal antenna is the one that maximizes
∣∣∣h∗

d,s

∣∣∣+∑N
n=1

∣∣h∗
r,ngns

∣∣ as shown in (9). From (20), the correspond-

ing optimal reflection coefficient is given by (10).
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