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Abstract—Intelligent reflecting surface (IRS), which is made
up of passive reflective elements and can control the phase of
the incident signal, and antenna selection (AS) can be com-
bined to yield a cost-and energy-efficient wireless technology
for the Internet of Things (IoT) system. For an IRS-assisted
IoT system with one fusion node and multiple sensor nodes,
we develop a jointly optimal AS and passive beamforming
rule that maximizes the sum data rate. In it, the number of
required channel estimations increases linearly with the number
of sensor nodes. Additional novel contributions include a closed-
form AS and passive beamforming rule, which maximizes the
sum of absolutes of channel gains while significantly reducing
computational complexity. To further simplify, we propose a new
channel acquisition procedure for which the number of channel
estimations is independent of the number of sensor nodes. Our
simulations show that the optimal rule yields up to 13.6× and 6×
higher rates than the maximum channel gain based and block
coordinate descent based algorithms, respectively. Furthermore,
they show that the simpler AS rule yields up to 12.4× gain
compared to other AS rules in the literature and is robust to
estimation errors.

Index Terms—Intelligent reflecting surface, antenna selection,
passive beamforming, IoT.

I. INTRODUCTION

The Internet of Things (IoT) networks in which the sensors
deployed over a large area communicate to a fusion node play
a key role in several applications such as smart cities and
precision agriculture [1], [2]. Operating these networks with
ultra-low power consumption at sensors and fusion node is
essential. The emerging intelligent reflecting surfaces (IRS),
which can improve the wireless signal strength in the desired
direction, can help the fusion node or the sensor nodes to
transmit with lower power. Therefore, the IRS, which is
made up of a large number of configurable passive reflective
elements and controls the gain and phase of the reflected signal
to achieve passive beamforming, can be deployed to improve
the energy efficiency of the IoT networks [3].

Similar to IRS, transmit antenna selection (AS), in which a
transmitter equipped with multiple antennas and a single radio
frequency (RF) chain selects an antenna and connects to the
available RF chain, also reduces cost and power consumption.
It is shown to achieve diversity equal to the number of antennas
even with less RF hardware, which made it a part of many
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wireless standards [4]. Furthermore, AS also reduces analog
circuit design complexity and digital signal processing [5].

Joint optimization of transmit precoding matrices and the
IRS phase shifts to maximize the achievable data rate of an
IRS-assisted IoT network is done in [1]. Furthermore, [2]
considered the weighted sum rate maximization of an IRS-
assisted IoT network.

Single User [5], [6]: For a single user system, jointly
optimal AS and passive beamforming rule is derived in [5].
Furthermore, simpler rules with lower computational complex-
ity and pilot transmission overhead were proposed. Similarly, a
discrete cuckoo algorithm based AS was proposed for perfect
channel state information (CSI) in [6].

Multiple Users [7]–[9]: For a multiple user system, joint AS
and passive beamforming to maximize the sum data rate was
studied using successive-refinement optimization in [7], using
successive convex approximation (SCA) in [8], and block co-
ordinate descent (BCD) approach in [9]. These AS algorithms
require complete CSI. The algorithm in [7] performs AS and
passive beamforming to iteratively maximize the sum-rate un-
der different CSI considerations. A Dinkelbach method based
AS and SCA based passive beamforming was proposed in [8].
A greedy AS and BCD based passive beamforming algorithm
was developed with different CSI assumptions in [9]. For a
multiple IRS system, a manifold optimization (MO) based
beamforming algorithm was proposed in [10]. An unsuper-
vised learning based joint active and passive beamforming was
developed in [11].

Focus and Contributions: We consider an IRS assisted
IoT network made up of a fusion node and multiple single
antenna sensor nodes. Here, the fusion node is equipped with
multiple antennas and single RF chain to reduce cost and
power consumption. It performs AS to send same message to
all the users over a narrow band single carrier. This common
message can be control information such as synchronization
details and data aggregation strategies to the sensor nodes.
Furthermore, it can be firmware update, which is common to
all the sensor nodes.

For this system, we focus on joint optimization of antenna
index at the fusion node and reflection coefficients at the IRS
to maximize the data rate summed over all the sensor nodes.
Since the same message is sent to all the users, the above
sum rate need not consider interference due to transmission
to multiple sensors. Firstly, we consider discrete IRS phase
shifts as IRS elements in practice can only induce certain
phase shifts. Secondly, we consider spatial correlation among
the IRS channel gains [12]. Thirdly, we consider the impact of



channel estimation errors and focus on developing AS rules
with lower channel estimation overhead. These are different
from [5], [8], [9], which consider continuous phase shifts
and from [5], [7], [9], [13], which consider independent IRS
channel gains. We also note that our objective is different from
the multiuser sum rate considered in [7], [9]. This is because,
in our system same message is sent to all the sensor nodes
and the interference need not be considered unlike multiuser
sum rate, where interference due to transmissions to other
nodes need to be considered. Our problem formulation is
in general suitable for any communication system. However,
hardware limitations such as single RF chain at the fusion node
and bandwidth constraints makes it more suitable for the IoT
networks.

Our specific contributions are as follows: 1) Optimal AS
Rule: We employ MO to develop an AS algorithm that finds
jointly optimal antenna index at the fusion node and reflection
coefficients of the IRS that maximizes the sum rate of an
IRS assisted IoT system. This algorithm converge to a locally
optimal solution [14]. The choice of MO algorithm is inspired
by its near-optimal performance with significantly lower com-
plexity compared to branch-and-bound algorithm [15].

2) Absolute Sum Based Selection (ASBS) Rule: We also
propose a closed-form and scalable ASBS rule that jointly
optimizes the antenna index at the fusion node and IRS
reflection coefficients to maximize approximate sum rate.
It computes absolutes of the direct link channel gains and
cascaded reflected link channel gains summed over the nodes.
It then adds all these to obtain the metric of each antenna
and selects the antenna that maximizes the metric. This rule
requires significantly lower number of computations compared
to the MO based optimal rule.

3) New Channel Estimation Scheme for ASBS Rule: Ex-
ploiting the fact that ASBS rule requires only channel gains
summed over sensor nodes, we propose a new CSI acquisition
protocol. With this new scheme, the number of channel
estimations required to perform AS and passive beamforming
become independent of the number of sensor nodes. The
ASBS rule combined with this channel estimation scheme
yields an approach with significantly lower complexity which
is scalable in terms of nodes.

4) Results: Our performance benchmarking shows that
the proposed optimal rule yields multiple fold improvement
compared to the existing AS rules. They show that even ASBS
rule performs significantly better than the rules in the literature
while requiring fewer channel estimations. Our results also
study the impact of imperfect CSI, channel correlation, and
discrete phase shifts on the sum rate achieved by the proposed
AS rules.

Comparison: We note that our AS rules are different from
the maximum channel gain (MCG) rule and the iterative sum-
rate maximization (ISM) rule proposed in [7] and the BCD
based rule in [9]. MCG rule first selects the antennas at the
transmitter for random IRS phase-shifts. Then similar to BCD
based rule in [9], it successively refines one phase at a time.
However, the proposed MO rule jointly optimizes antenna

index and the IRS phase-shifts.
Organization of paper: Section II presents the system model

and problem formulation. Section III describes optimal and
low complexity selection algorithms. Section IV compares the
performance of the proposed AS rules. Our conclusions are
given in Section V.

Notations: Scalars are denoted by lower-case letters. Vectors
and matrices are denoted by boldface lower-case and upper-
case letters, respectively. For a complex number a, |a|, arg(a),
and a∗ denote its absolute value, phase, and conjugate, respec-
tively. For a vector x, xT, xH denote its transpose, conjugate
transpose, respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Figure 1 shows our system model. In it, a fusion node
equipped with Nt antennas and one RF chain broadcasts data
to K single antenna sensor nodes with the help of an IRS
made up of N reflective elements. Let A = {1, 2, . . . , Nt},
N = {1, 2, . . . , N}, and K = {1, 2, . . . ,K} denote the set of
antennas, the set of IRS elements, and the set of sensor nodes,
respectively. The fusion node dynamically selects an antenna
a ∈ A and switches it to the RF chain. It also computes the
discrete phase shift from M available phase shifts,

∆i ∈
{

0,
2π

M
,

4π

M
, . . . ,

(M − 1)2π

M

}
, ∀ i ∈ N , (1)

and communicates them to the IRS through a dedicated control
link. We consider unity gain independent of the phase shift
configured for all the IRS elements. This is widely used in the
literature for analytical tractability [7], [14], [16]. We note that
in practice, amplitude gain of an IRS reflection coefficient is a
function of the phase shift configured [17]. However, assuming
that the gain is independent of the phase shift configured
simplifies the problem at hand and yields negligible loss in
the performance [5].

Let hkm ∈ C denote the complex channel gains from m
th

antenna of the fusion node to the k
th

sensor node. Let fim ∈
C denote the complex channel gains from m

th

antenna of
the fusion node to the i

th

IRS element. Let gki ∈ C denote
the complex channel gain from the i

th

IRS element to the
k

th

sensor node. The signal received at sensor node k, when
the fusion node broadcasts a complex symbol s with transmit
power P using antenna m, is given by

yk =
√
P

(
hkm +

N∑
i=1

gkifime
j∆i

)
s+ zk, (2)

where zk is complex additive white Gaussian noise with
variance σ2.

A. Channel Model and CSI

Signal bandwidths used by typical IoT networks such as
long range (LoRa) and Sigfox are of the order of few hundred
kilo Hertz [18]. Therefore, we focus on single carrier transmis-
sion and consider a quasi-static narrow band channel model
in which the channel gains remain constant and show fre-
quency flat response. Furthermore, we consider time-division
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Figure 1. System model with an IRS assisted multi-antenna fusion node
with single RF chain performing AS to send common data to multiple sensor
nodes.

duplexing mode of operation to exploit channel reciprocity. We
consider independent Rayleigh fading for the channel gains
from the fusion node to sensor nodes and correlated Rician
fading for the channels from the fusion node to IRS and
from the IRS to sensor nodes. The sinc-function based channel
correlation model developed in [12] is considered. The spatial
correlation between the channel gains of the IRS elements n
and m with spacing dnm is modeled as sin(2πdnm/λ)

2πdnm/λ
, where

λ denotes the wavelength. The sensor nodes transmit pilots
and the fusion node estimates the direct link and reflected
link channel gains using a two stage procedure described
in [5], [16]. Let ĥkm and ĉkim denote the estimates of the
direct link channel gain hkm and cascaded link channel gains
ckim = gkifim, respectively. Let h̃km, and c̃kim denote the
estimation errors of the direct link and cascaded link channel
gains, respectively. We model them as in [7]:

ĥkm =
√

1− σehkm +
√
σeh̃km, (3)

ĉkim =
√

1− σeckim +
√
σe, c̃kim, (4)

∀ k ∈ K,∀ i ∈ N ,∀ m ∈ A, and σe ∈ [0, 1] captures the
accuracy of channel estimation.

B. Problem Formulation
To avoid exhaustive search over all MN combinations of

discrete phases, we first consider a continuous phase θi ∈
[0, 2π] and then quantize it to obtain the discrete phase ∆i.
Let xi = ejθi ,∀ i ∈ N denote the reflection coefficient of the
ith IRS element, and x = [x∗1, x

∗
2, . . . , x

∗
N ]T ∈ CN×1 denote

the reflection coefficient vector. Therefore, the received signal
in (2) becomes

yk =
√
P

(
hkm +

N∑
i=1

ckimxi

)
s+ zk. (5)

Let Tc and Tp denote the total number of symbols in the
coherence interval and the number of pilot symbols, respec-
tively. Let ckm = [ck1m, ck2m, . . . , ckNm]

T denote the vector
of cascaded channel gains. From (5), the data rate summed
over all the sensor nodes, for mth antenna at the fusion node
and the reflection coefficient vector x, can be written as

R (m,x)=
Tc−Tp
Tc

K∑
k=1

log2

(
1+

P
∣∣hkm+xHckm

∣∣2
σ2

)
. (6)

We note that there is no interference term in the above sum
rate expression as same data symbol s is sent from the fusion
node to all the sensors.

Our goal is to jointly optimize the transmit antenna index
m and the passive beamforming vector x to maximize the
data rate summed over all the sensor nodes subject to unit
modulus constraint of the IRS reflection coefficients. It can be
mathematically stated as

P : max
m,x

R (m,x) , (7)

s.t. |xi| = 1, ∀ i ∈ N . (8)

In the next section, we propose an algorithm to solve the above
problem P , which is non-convex and is hard to solve due to
unit modulus constraints.

III. ANTENNA SELECTION ALGORITHMS

In this section, we will first propose an MO based algorithm,
which yields a local optimal solution to P [14], and study its
channel estimation overhead and computational complexity.
We then propose an AS rule that significantly reduces the
complexity. For it, we also propose a new channel estimation
protocol that reduces estimation overhead.

A. MO Selection Algorithm

Let Dkm(x) = P
∣∣hkm+xHckm

∣∣2/σ2 denote the instanta-
neous signal-to-noise ratio from the m

th

antenna of the fusion
node to the k

th

sensor node. For a given antenna m ∈ A, the
optimal passive beamforming vector x is the one that solves
the following problem:

Pm : max
x

K∑
k=1

log2 (1 +Dkm(x)) , (9)

s.t. |xi| = 1, ∀ i ∈ N . (10)

In spite of being non-convex, the unit modulus constraints
in (10) forms a complex circle manifold, which is a space that
resembles an Euclidean space locally [5], [14]. This combined
with differentiable nature of the objective function helps us
solve Pm.

In Euclidean space, to solve the optimization problem, we
compute the gradient of the objective function, which indicates
the direction in which the function increases. The structure of
the unit modulus constraint helps us find an Euclidean gradient
equivalent vector. For complex circle manifold, we obtain this
by projecting the Euclidean gradient onto the tangent space
at the point where we computed the Euclidean gradient. The
Euclidean gradient of the objective function in (9) is given by

K∑
k=1

1

1 +Dkm(x)
∇xDkm(x), (11)

where ∇xDkm(x) = 2ckmcHkmx + 2h∗kmckm. Using the pro-
jection of this vector, we can solve Pm using the optimization
algorithms equivalent to the algorithms such as conjugate-
gradient and trust-region developed for Euclidean space, which
are shown to converge to a local optimal solution.



The optimal selection algorithm solves P1, . . . ,PNt
using

MO techniques to obtain the corresponding optimal passive
beamforming vectors x1, . . . ,xNt . It then selects antenna

a = arg max
m∈{1,...,Nt}

R (m,xm) , (12)

at the fusion node. It then Quantizes phases of xa and sends
them to the IRS. These steps are explained in detail in
Algorithm 1.

Algorithm 1 Manifold Optimization Based Algorithm
1: Obtain required CSI
2: for all m ∈ A do
3: Solve Pm to obtain corresponding optimal passive

beamforming vectors xm.
4: end for
5: Select antenna a = arg maxm∈{1,...,Nt}R (m,xm),
6: Quantize phases of xa to obtain ∆1, . . . ,∆N .
7: return a, ∆1, . . . ,∆N .

Estimation Overhead and Computational Complexity of the
MO Algorithm: Since, there is only one RF chain at the
fusion node, each sensor node needs to send one pilot for
each antenna at the fusion node to obtain the corresponding
direct link channel gain. Therefore, the fusion node does
KNt estimations to obtain all the direct link channel gains.
Similarly, each sensor node needs to send one pilot for each
antenna at the fusion node and for each reflective element at
the IRS to obtain cascaded reflected link channel gains. So,
we need KNtN estimations at the fusion node to obtain the
reflected link CSI. Therefore, the total number of estimations
required to obtain complete CSI is KNt(N + 1), which
increases as the number of sensor nodes increase.

Computational complexity of solving Pm using conjugate
gradient algorithm is O

(
KN1.5

)
[14]. Therefore, we need

O
(
NtKN

1.5
)

computations to solve P1, . . . ,PNt . It scales
better than the SCA and BCD algorithms considered in the
literature [8], [9].

B. Absolute Sum Based Selection (ASBS)

We now propose the ASBS rule aimed at reducing the
complexity of the MO algorithm. By Jensen’s inequality, we
know that

R (m,x) ≤ KTc − Tp
Tc

log2

(
1 +

PSK (m,x)

Kσ2

)
, (13)

where

SK (m,x) =

K∑
k=1

∣∣∣∣∣hkm +

N∑
i=1

ckimxi

∣∣∣∣∣
2

(14)

is the sum of absolute squares of the effective channel gains
from the fusion node to the sensor nodes. Let LK (m,x)
denote the sum of absolutes of the effective channel gains,
i.e.,

LK (m,x) =

K∑
k=1

∣∣∣∣∣hkm +

N∑
i=1

ckimxi

∣∣∣∣∣ . (15)

Let

RL(m,x) = K
Tc − Tp
Tc

log2

(
1 +

P (LK (m,x))
2

Kσ2

)
. (16)

Using the fact that SK (m,x) ≤ (LK (m,x))
2, we get

R (m,x) ≤ RL(m,x). From triangular inequality, we know

LK (m,x) ≥

∣∣∣∣∣
K∑
k=1

hkm +

K∑
k=1

N∑
i=1

ckimxi

∣∣∣∣∣ . (17)

Substituting, the right hand side of (17) in (16) yields
a lower bound on RL(m,x) and an approximation
to the sum rate R (m,x). Therefore, we maximize∣∣∣∑K

k=1 hkm +
∑N
i=1 xi

∑K
k=1 ckim

∣∣∣ instead, which in turn
maximizes the approximate sum rate. This approximation can
be shown to be tight due to sum over large number of IRS
elements. Thus, the simplified optimization problem can be
written as

PL : max
m,x

∣∣∣∣∣
K∑
k=1

hkm +
N∑
i=1

xi

K∑
k=1

ckim

∣∣∣∣∣ , (18)

s.t. |xi| = 1, ∀ i ∈ N . (19)

For a given antenna m, the objective in PL is maximized
when

xi = exp

(
j arg

(
K∑
k=1

hkm

)
− j arg

(
K∑
k=1

ckim

))
, (20)

∀ i ∈ N . Substituting this in the objective function in (18), we
get

∣∣∣∑K
k=1 hkm

∣∣∣ +
∑N
i=1

∣∣∣∑K
k=1 ckim

∣∣∣. Therefore, the ASBS
rule that solves PL is given by

a = arg max
m∈{1,...,Nt}

{∣∣∣∣∣
K∑
k=1

hkm

∣∣∣∣∣+

N∑
i=1

∣∣∣∣∣
K∑
k=1

ckim

∣∣∣∣∣
}
, (21)

θi = arg

(
K∑
k=1

hka

)
− arg

(
K∑
k=1

ckia

)
,∀ i ∈ N . (22)

It configures the phases of all the IRS elements such that
the corresponding sum of cascaded link channel gains of the
selected antenna, i.e.,

∑K
k=1 ckia, is aligned with the sum of

the direct link channel gains, i.e.,
∑K
k=1 hka. We quantize the

above θi to obtain discrete phase shifts ∆i.

C. New Channel Estimation Protocol for the ASBS rule

Below, we propose a new two stage channel estimation
procedure for the ASBS rule. In the first stage, IRS is in
fully absorption mode to estimate the direct link channel gains.
Here, all the sensor nodes transmit the same pilot symbol dp
simultaneously with power Pp. The signal received at the mth

antenna of the fusion node is given by

ypm =
√
Pp

K∑
k=1

hkmdp + wm, (23)

where wm is the additive Gaussian noise. Using ypm, we
estimate

∑K
k=1 hkm directly.



Similarly, in the second stage for the reflected link channel
gains, the sensor nodes transmit dp with only one IRS element
in reflection mode. The received pilot signal at m

th

antenna
for i

th

IRS element is given by

ypim=
√
Pp

(
K∑
k=1

hkm

)
dp+

√
Pp

(
K∑
k=1

ckim

)
dp+wm, (24)

Here, we first subtract the direct link channel gains obtained
in the first stage and then estimate

∑K
k=1 ckim for i ∈ N .

As fusion node estimates only the sum channel gains,
it performs Nt estimations to obtain the direct link CSI.
Similarly, to obtain the sum of the cascaded link channel
gains, it does N estimations per antenna. In total, fusion node
performs Nt(N + 1) estimations, which is independent of K.

Complexity of ASBS Rule With the New Channel Estimation
Protocol We need O (NNt +Nt log2(Nt)) computations to
select antenna a in (21) and O (N) computations to obtain
phase in (22). Therefore, the ASBS rule combined with the
proposed new CSI acquisition procedure is scalable in terms
of number of sensor nodes. Its computational complexity
and estimation overhead are independent of the number of
sensor nodes and significantly lower than the MO based
optimal selection algorithm. They are also lower compared
to the MCG rule, which requires O (NKM +Nt log2(Nt))
computations and O (NKNt) estimations [7]. Table below
shows the scalability of ASBS rule in terms of number of users

Computational complexity Training overhead
MO O(KNtN

1.5) KNt(N + 1)
ASBS O(NNt +Nt log2(Nt)) Nt(N + 1)

IV. NUMERICAL RESULTS AND DISCUSSION

We firstly benchmark the performance of the proposed AS
rules with AS rules in the literature. We then study the impact
of number of sensor nodes, discrete phase shifts, imperfect
CSI, and the channel correlation on the proposed AS rules. Our
simulation setup is similar to the multiuser system considered
in [19]. We consider a signal bandwidth of 1 MHz centered
around 3 GHz. The coherence interval Tc and noise variance
are taken to be 33 ms and −114 dBm, respectively. Rice factor
for different sensor nodes is modeled as 13− 0.03d, where d
is the distance, and the path loss exponent is taken to be 3.6
for the direct channel and 2.4 for channels to and from the
IRS [12]. Let dirs denote the size of each IRS element.

Figure 2 plots the objective function in (9) as a function
of the number of sensor nodes for the proposed AS rules, the
MCG rule in [7], and BCD based AS rule proposed in [9].
To do a fair comparison the multi-user interference is not
considered during AS and while computing the objective for
the MCG and BCD rules. The performance is shown for both
continuous phase shifts (M = ∞) and discrete phase shifts
(M = 8). We see that the proposed MO algorithm performs
significantly better for all the values of K. For K = 100 and
N = 196, it achieves 13.6× and 6× higher sum rate than
the BCD and MCG rules, respectively. This gain is due to
the joint optimization of all the IRS phase shifts. We only
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Figure 2. Impact of number of sensor nodes: Sum data rate as a function of
number of sensor nodes (Nt = 2, dirs = λ/2, σe = 0, and P = 0 dBm).

show the performance for M = 8 for MCG rule as it is
designed only for discrete phase shifts. We see that the ASBS
rule, which requires much lower number of computations and
estimations, also performs significantly better than the BCD
and MCG rules in literature. This is because of its design to
optimize approximate sum rate. For K = 100 and N = 196,
it achieves 12.4× and 5.5× higher sum rate than the BCD and
MCG rules, respectively. We also see that the performance of
M = 8 discrete phase shifts, which require 3 bits, is close to
the performance of the ideal IRS with continuous phase shifts.

Figure 3 plots sum data rate as a function of the transmit
power. It studies the impact of imperfect CSI on the proposed
MO and ASBS rules. The sum data rate increases as the
transmit power increases. We see that the performance of
the ASBS rule with channel estimation errors is very close
to the perfect CSI case. This negligible performance loss is
due to the fact that the ASBS rule only estimates the sum
channel gains and performs fewer channel estimations, i.e.,
Nt(N + 1). Thus the impact of estimation error is less for
ASBS rule. Whereas the performance of the MO algorithm
degrades significantly due to channel estimation errors. This
is because it estimates cascaded channel gains corresponding
to each IRS element for each user and performs Nt(N + 1)K
estimations, which increase as the number of users increase.
We note that the MCG and BCD rules also see an impact
similar to the MO rule due to higher number of estimations.
Thus, MO algorithm is sensitive to the estimation errors. In
combination with Figure 2 we see that the ASBS rule is robust
to channel estimation errors compared to the MO algorithm
while performing reasonably well with significantly lower
computational complexity.

Figure 4 studies the impact of IRS channel correlation.
It plots the sum data rate as a function of power for the
ASBS and MO rules. This is done for IRS element sizes of
dirs = λ/2, λ/4, and λ/8. We see an improvement in the sum
data rate as the IRS element size decreases, which increases
correlation among the channel gains of the IRS elements. This
is inline with the observation in [20].
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Figure 4. Impact of correlation: Sum data rate as a function of P (N =
100, Nt = 4, and K = 5).

V. CONCLUSIONS

We proposed a joint single AS and passive beamforming
algorithm to maximize sum data rate of an IRS assisted
IoT system. It employs MO techniques and converges to a
locally optimal solution. For it, we showed that the number
of channel estimations performed at the fusion node increase
linearly as the number of sensor nodes increase. We also
developed a simpler ASBS rule, which maximizes the approx-
imate sum rate and is a function of channel gains summed
over sensor nodes. Exploiting this, we developed a new CSI
acquisition procedure in which the number of estimations
required is independent of the number of sensor nodes. Our
results showed that the proposed MO rule yields significant
performance gain compared to the MCG and BCD based rules
in the literature. Performance comparison showed that the
ASBS rule performs well with significantly lower complexity.
Furthermore, it is robust to the estimation errors as it performs
fewer estimations compared to the MO algorithm. Therefore
the proposed algorithms are both scalable and practical. Our
results also showed that spatial correlation of IRS channels
yields a slight improvement in the sum rate and discrete phase
shifts with few bits are sufficient to reach the performance of
the continuous phase shifts. Future work includes analysis of
the energy savings and real-world tests of the IRS assisted AS
system.
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