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Abstract—We focus on a spectrum sharing based secondary
cell-free system, which enables efficient utilization of the limited
spectrum. For it, we develop a distributed downlink power
allocation algorithm, in which each access point (AP) computes
only its power coefficients locally, to improve energy efficiency
(EE) while satisfying the interference constraints imposed by the
primary system. Each AP solves smaller number of variables in
parallel compared to centralized approach in which all power
coefficients are computed centrally. Hence, it is computationally
efficient and is scalable in terms of the number of APs. For
the simulation setup considered with correlated Rayleigh fading,
the proposed distributed approach achieves up-to 85% of the
centralized EE. Furthermore, it achieves better performance
compared to other distributed approaches.

Index Terms—Cell-free, spectrum sharing, energy efficiency,
distributed, power allocation.

I. INTRODUCTION

Cell-free massive multiple input multiple output (MIMO)
systems in which multiple geographically distributed access
points (APs) cooperate to serve a large number of users can
provide uniform service to the users [1]. In the centralized ap-
proach, the APs send received signals to the central processing
unit (CPU), which performs channel estimation, precoding,
and power allocation. It requires a large amount of signaling
between the APs and CPU and increases complexity at the
CPU. In the distributed approach, which is scalable, the APs
perform some of the tasks locally and reduce the signaling
overhead and complexity at the CPU.

Spectrum sharing, which is widely accepted by the spectrum
regulators, is crucial to enable new wireless technologies and
efficient use of the scarce spectrum. Federal Communications
Commission allows spectrum sharing in sub-6 GHz bands,
especially for low-power indoor operations [2]. In the underlay
mode of spectrum sharing, the secondary system transmits
concurrently with the primary system, while satisfying the
interference constraint imposed by the primary system [3], [4].

The energy efficiency (EE), which is equal to the number
of bits that can be transmitted using one Joule of energy, is
an important performance metric of a communication system.
Transmit power allocation algorithms, which play a crucial
role in achieving better EE, are developed for a cell-free
system in [5], [6]. A max-min fairness based power allocation
is studied for an underlay cell-free system is studied in [4].
The sum-rate maximization is studied in [7], [8]. The power
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allocation of a centralized cell-free secondary system to maxi-
mize its EE is developed in [9]. Its complexity increases as the
number of secondary users or the number of APs increases.
However, the distributed power control that maximize EE is
not developed for a secondary cell-free system.

Focus and Contributions: We consider a downlink sec-
ondary cell-free massive MIMO system that operates in dis-
tributed approach and shares spectrum with a primary massive
MIMO system. The L secondary APs perform minimum mean
square error (MMSE) channel estimation, maximal ratio (MR)
precoding, and allocates power to Ks secondary users locally
to maximize EE. We focus on reducing the computational
complexity and scalability issues involved in the centralized
power allocation. We consider practically relevant correlated
Rayleigh fading and average interference constraint to protect
the primary system from excessive interference.

i) Power allocation problem to maximize EE involves LKs

power allocation variables and needs to be solved at the CPU.
We modify the objective and constraints of the centralized
optimization problem to formulate a distributed problem with
Ks power allocation variables of one AP. It can be solved
locally at each AP. First, we propose a convex lower bound
based iterative algorithm whose complexity increase only with
Ks instead of LKs as in centralized approach.

ii) We then propose a complete power allocation algorithm
that exploits power scaling to further improve the EE and
use distributed equal power to reduce the complexity. This
distributed approach obtains a trade-off between the EE per-
formance and the computational complexity. It is scalable in
terms of number of APs.

iii) For the simulation setup considered, we show that
our distributed approach reaches 85% EE of the centralized
approach while allowing parallel computations. As distributed
EE power allocation is not studied in the literature for our
system model, we benchmark the performance with the adap-
tations of the existing simpler power allocations schemes. We
shows that the proposed approach yields a better performance.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Our system model, in which a secondary cell-free system
transmits concurrently with a primary massive MIMO system,
is shown in Fig. 1. The M antenna primary base station (BS)
serves Kp single antenna primary users. The secondary cell-
free system, which shares spectrum with the primary, has L
distributed APs with N antennas each. Each AP performs
power allocation locally to serve all the Ks single antenna
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Fig. 1. Secondary cell-free system that transmits concurrently with a primary
massive MIMO system.

secondary users. Furthermore, there is no communication
among the APs to perform power allocation. Both primary
and secondary systems operate in time division duplex mode.

Let hkl ∈ CN×1 and gsp−ml ∈ CN×1 denote the complex
channel gain vectors from the lth secondary AP to the kth

secondary user and to the mth primary user. We consider
the correlated Rayleigh fading channel model. Let Rkl and
Bsp−ml denote the covariance matrices of hkl and gsp−ml,
respectively. Therefore, hkl ∼ CN (0,Rkl) and gsp−ml ∼
CN (0,Bsp−ml). Let gps−k ∈ CM×1 and gm ∈ CM×1 denote
the complex channel gain vectors from the primary BS to the
kth secondary user and to the mth primary user, respectively.
Let Bps−k and Dm denote the covariance matrices of gps−k

and gm, respectively. Therefore, gps−k ∼ CN (0,Bps−k) and
gm ∼ CN (0,Dm). We assume that the channel gains of
different links are independent of each other. The secondary
APs know the estimates of the channel gains to the secondary
users and statistics of the channel gains to the primary users.
CPU only knows the channel statistics [4], [10].

Channel Estimation: APs perform MMSE channel estima-
tion described in [1, Sec. 4.2]. The number of symbols in the
coherence interval and pilot sequence are denoted by τc and
τp, respectively. Let ϕi ∈ Cτp×1, for i = 1, . . . , τp denote unit
norm orthogonal pilot sequences shared among the primary
and secondary systems. We consider pilot contamination. The
secondary user k transmits the pilot sequence ϕtk . The same
pilot sequence is transmitted by sets of primary and secondary
users denoted by Mk and Nk, respectively. Let a ≥ 0 and
b ≥ 0 denote the pilot powers used by the secondary and
primary users, respectively. We project the pilot signal received
at the lth secondary AP onto ϕtk . It is given by

yp
tkl

=
√
a
∑
i∈Nk

hil +
√
b
∑

j∈Mk

gsp−jl + ztkl, (1)

where ztkl is the projected noise vector distributed as
CN

(
0, σ2IN

)
. Now, using yp

tkl
, the MMSE estimate

ĥkl =
√
aRklA

−1
tkl

yp
tkl

, (2)

where Atkl = a
∑

i∈Nk
Ril + b

∑
j∈Mk

Bsp−jl + σ2IN [1].

From (2), we see that ĥkl ∼ CN
(
0, R̂kl

)
, where R̂kl =

aRklA
−1
tkl

Rkl and the estimation error h̃kl = hkl − ĥkl ∼
CN

(
0, R̃kl

)
, where R̃kl = Rkl − R̂kl.

Signal-to-Interference-Plus-Noise-Ratio (SINR) Computa-
tion: Let pil ≥ 0 and ail denote the power allocated and

the precoding vector used to transmit unit power symbol
qi from lth secondary AP to ith secondary user. Let p =
[p11, . . . , pKs1, . . . , p1L, . . . , pKsL]

T denote the power alloca-
tion vector. Channel estimation based MR precoding is done

at the secondary APs. Hence, ail = ĥil

/√
Trace

(
R̂il

)
.

The signal yk received at the secondary user k when the AP
l transmits xl =

∑Ks

i=1

√
pilailqi, l = 1, . . . , L, is given by

yk =

L∑
l=1

√
pklh

H
klaklqk +

Ks∑
i=1
i ̸=k

L∑
l=1

√
pilh

H
klailqi + dk + zk,

where zk ∼ CN
(
0, σ2

)
is additive white Gaussian noise and

dk denotes the interference from the primary massive MIMO
BS with collocated antennas. We assume dk to be negligibly
small due to independence of channel gains and favorable
propagation. The secondary user k only knows E

{
hH
klakl

}
,

for l = 1, . . . , L, which are the channel statistics. With this
statistical channel knowledge, the effective SINR Γk (p) for
the use and forget bound can be derived using techniques in [1,
Ch. 6]. Upon simplification, we get

Γk (p) =

(∑L
l=1

√
pkl Trace

(
R̂kl

))2

Ks∑
i=1

L∑
l=1

pklnikl +
Ks∑

i=1,i̸=k

(
L∑

l=1

√
pilmikl

)2

+ σ2
k

,

(3)
where σ2

k is the interference-plus-noise-power,

nikl = Trace
(
R̂ilRkl

)/
Trace

(
R̂il

)
, (4)

mikl = INk
(i)Trace

(
RilA

−1
til

Rkl

)/√
Trace

(
R̂il

)
, (5)

with INk
(i) = 1, when the secondary users i and k use the

same pilot sequence. Note that m2
kkl = Trace

(
R̂kl

)
.

A. Objective and Constraints

The net achievable rate of the secondary user k is given by

SEk(p) = (1− τp/τc) log2 (1 + Γk (p)) bit/sec/Hz. (6)

Let η and Cp denote the inverse power amplifier efficiency
and the total circuit power consumption, respectively. Then,
the total power consumed at all the secondary APs is given
by

PT (p) = η

Ks∑
i=1

L∑
l=1

pil +Cp. (7)

The EE, which is the ratio of sum rate and total power
consumed, as a function of p, is given by

EE(p) = B

Ks∑
k=1

SEk(p)
/
PT (p), (8)

where B is the system bandwidth. The EE maximization is
subject to the following two constraints
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i) The peak transmit power constraint at each AP, motivated
by the power amplifier limitations, limits the total average
transmit power to be below Pmax. It is given by

Ks∑
i=1

pil ≤ Pmax, l = 1, · · · , L. (9)

ii) The average interference constraint, which protects the
primary users from the excessive interference, limits the total
average interference seen at each primary user to be less than
or equal to Ith [4], [11]. In the distributed approach, each
secondary AP only knows its power allocation coefficients.
Hence, it can only compute the interference caused due to its
transmissions and not the total interference. To overcome this
issue, we propose distributed interference constraints at each
AP. We limit the interference due to transmissions of each AP
to be below Ith/L. This ensures that the total interference seen
at each primary user due to L secondary APs is below Ith.

The interference signal received at mth primary user
due to transmission from lth AP is given by yspml =
gH
sp−mlxl. The power of this interference signal is

given by E
{
|yspml|

2
}

=
∑Ks

i=1 pilbiml, where biml =

Trace
(
R̂ilBsp−ml

)/
Trace

(
R̂il

)
. Therefore, the set of av-

erage interference constraints imposed at lth secondary AP are
given by ∑Ks

i=1
pilbiml ≤ Ith/L, m = 1, . . . ,Kp. (10)

III. DISTRIBUTED POWER ALLOCATION ALGORITHM

The EE in (8) is a function of the power allocation co-
efficients of all the APs. Hence, their joint optimization to
maximize EE has to be done at the CPU. We will now
modify this objective function to develop a distributed power
allocation algorithm that can be implemented at each AP.

Each AP formulates a distributed objective function, which
depends only on its power allocation coefficients, assuming
that all the other APs are transmitting with equal power
that satisfies the peak power constraint and total average
interference constraint, i.e.,

∑L
l=1

∑Ks

i=1 pilbiml ≤ Ith for
m = 1, . . . ,Kp. It is given by

Peq = min
{
Pmax/Ks, Ith/V1, . . . , Ith/VKp

}
, (11)

where Vm =
∑L

l=1

∑Ks

i=1 biml. The CPU computes Peq and
sends to the APs. Let pr = [p1r, p2r, . . . , pKsr]

T denote the
vector of power allocation coefficients at rth AP. At AP r, we
rewrite the total power consumed in terms of pir and pil, for
l ̸= r. Substituting pil = Peq, for l ̸= r in (7), we obtain
P

d

T (pr), which is function of only pr:

P
d

T (pr) = η
∑Ks

i=1
pir + η(L− 1)KsPeq +Cp. (12)

Now to obtain a distributed formulation of SEk(p) in
the numerator of the EE in (8), we focus on centralized
effective SINR Γk (p) of the kth secondary user in (3).
We split the numerator of Γk (p) in terms of pir and pil,

for l ̸= r as follows:
(√

pkrmkkr +
∑L

l=1,l ̸=r

√
pklmkkl

)2
.

Upon substituting pil = Peq, for l ̸= r, it reduces

to
(√

pkrmkkr +
√

Peq
∑L

l=1,l ̸=r mkkl

)2
. Similarly, the first

term in the denominator, i.e.,
∑Ks

i=1

∑L
l=1 pklnikl, reduces to∑Ks

i=1 pkrnikr+Peq
∑L

l=1,l ̸=r

∑Ks
i=1 nikl. Performing a similar

simplification to the second term in the denominator of Γk (p),
which arises due to the pilot contamination, we get∑Ks

i=1,i̸=k

(
√
pirmikr +

√
Peq

∑L

l=1,l ̸=r
mikl

)2

. (13)

Substituting the above simplifications in (3), yields the mod-
ified SINR, which we denote as Γd

k (pr). It is given in (14).

Substituting the modified SINR in (14) and the modified
power in (12) in the objective function in (8) yields

B
(
1− τp

τc

)∑Ks

k=1 log2
(
1 + Γd

k (pr)
)

η
∑Ks

i=1 pir + η(L− 1)KsPeq +Cp

, (15)

which is a function of only the power allocation coefficients
corresponding to AP r. Therefore, our distributed optimization
problem at AP r that maximizes the above modified objective
function subject to the constraints is given by

Pd : max
pr

(15),

s.t. (9), (10), pir ≥ 0, i = 1, . . . ,Ks.
(16)

Although (9) and (10) are convex, the objective function (15)
is non-convex. Hence, Pd is non-convex.

A. Distributed Optimal Power Allocation
To solve the above non-convex optimization problem Pd at

AP r, we obtain a convex lower bound on (15) and maximize
it. To do that, we focus on its numerator and rewrite

Ks∑
k=1

log2
(
1 + Γd

k (pr)
)
= f1(pr)− f2(pr), (17)

where f1(pr) =
∑Ks

k=1 log2 (Numk + Denk), f2(pr) =∑Ks

k=1 log2 (Denk), and Numk and Denk are the numerator
and denominator of Γd

k (pr) in (14). We note that f1(pr) and
f2(pr) are concave functions. However, f1(pr)−f2(pr) is not
concave. To obtain a lower bound that is concave, we upper
bound f2(pr) with its first order Taylor’s series expansion
f̄2
(
pr, p̄

0
r

)
around p̄0

r =
[
p̄01r, p̄

0
2r, . . . , p̄

0
Ksr

]T
. It is given by

f̄2
(
pr, p̄

0
r

)
= f2

(
p̄0
r

)
+ ∇f2

(
p̄0
r

)T (
pr − p̄0

r

)
. Using this,

we get the following lower bound,
Ks∑
k=1

log2
(
1 + Γd

k (pr)
)
≥ f1(pr)− f̄2

(
pr, p̄

0
r

)
. (18)

Substituting the above inequality in (15) yields
EElb

(
pr, p̄

0
r

)
, which is a lower bound on the objective

of the distributed problem

EElb

(
pr, p̄

0
r

)
=

f1(pr)− f̄2
(
pr, p̄

0
r

)
η
∑Ks

i=1 pir + η(L− 1)KsPeq +Cp

. (19)

For a given p̄0
r , with (19) as the objective function, we

formulate the following optimization problem

max
pr

EElb

(
pr, p̄

0
r

)
,

s.t. (9), (10), pir ≥ 0, i = 1, . . . ,Ks,
(20)
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Γd
k (pr)=

Numk

Denk
=

(√
pkr Trace

(
R̂kl

)
+
√
Peq
∑L

l=1,l ̸=r

√
Trace

(
R̂kl

))2

∑Ks

i=1 pkrnikr + Peq
∑L

l=1,l ̸=r

∑Ks
i=1(nikl) +

∑Ks

i=1,i̸=k

(√
pirmikr +

√
Peq

∑L
l=1,l ̸=r mikl

)2
+ σ2

k

. (14)

which has a fractional objective with concave function in the
numerator and linear function in the denominator.

Iterative Algorithm: Dinkelbach’s algorithm [12], which
optimizes the difference between the numerator and scaled
denominator of the fractional objective function, can solve
the above fractional problem. For the fractional objective
in (19), we define the function F (pr, p̄

0
r, λn) optimized by

the Dinkelbach’s algorithm. It is a function of pr, the vector
p̄0
r around which we expand f2(pr), and Dinkelbach’s iterative

parameter λn given by

F (pr, p̄
0
r, λn)=f1(pr)− f̄2

(
pr, p̄

0
r

)
− λn

(
η(L− 1)KsPeq+η

Ks∑
i=1

pir +Cp

)
.

Therefore, at rth AP, the optimization problem for the nth

iteration of the Dinkelbach’s algorithm is given by

Pr
n : max

pr

F (pr, p̄
0
r, λn), (21a)

s.t. (9), (10), pir ≥ 0, i = 1, . . . ,Ks. (21b)

The Dinkelbach’s parameter for the (n + 1)th iteration is
obtained by substituting the solution of Pr

n in (19). Once the
function F (pr, p̄

0
r, λn) converges for a given p̄0

r , we repeat
the process by expanding f2(pr) around the solution obtained.
This process is repeated till the objective in (19) converges.

To further improve the performance of the above iterative
algorithm, we perform scaling and to reduce complexity,
we utilize distributed equal power. i) Scaling: The solution
obtained by the above iterative algorithm can be conservative
due to the tight interference threshold Ith/L in (10). Therefore,
for small Pmax values, we scale the solution obtained by
solving Pr

n to meet the power constraint in (9) while ensuring
the interference constraint is not violated. ii) Distributed Equal
Power P d

eq(r): Substituting pir = P d
eq(r) in (9) and (10),

we get the following equal power that satisfies both these
constraints with equality

P d
eq(r) = min {Pmax/Ks, Ith/LBr} , (22)

where Br = maxm{
∑Ks

i=1 bimr}. This equal power differs
from Peq in (11) and is different for each AP.

For smaller values of Pmax, i.e., if Pmax ≤ KsIth
LBr

, we use
the scaled version of the solution obtained from the above
iterative algorithm. Otherwise, the rth AP allocates pir = Ith

LBr

for i = 1, . . . ,Ks. The pseudo-code of our proposed dis-
tributed algorithm is described in Algorithm 1. It combines
Dinkelbach’s algorithm, power scaling, and use of distributed
equal power to improve performance and reduce complexity.
The complete power allocation vector p = [pT

1 ,p
T
2 , . . . ,p

T
L].

Substituting this in (8) gives us the EE of the complete system.

For a given initial point p̄t
r, the Dinkelbach’s algorithm in

the inner loop of Algorithm 1 converges to the global solution
of (20) in a super-linear convergence rate [12]. Furthermore,
the use of convex lower bound ensures that the outer loop
converges to a local maximum of the problem in (16).

Unlike the centralized approach, where one optimization
algorithm is solved centrally at the CPU, now each AP runs the
above algorithm locally. This distributed algorithm at each AP
solves only for Ks variables unlike in the centralized approach
where the CPU solves for LKs variables jointly.

Algorithm 1 Distributed optimal power allocation at rth AP
Input: Pmax, Ith, and required channel statistics
if Pmax ≤ KsIth

LBr
then

Set t = 0 and choose a feasible initial point p̄t
r

while EElb (pr, p̄
t
r) does not converge do

Initialize ϵ > 0; n = 0;λ0 = 0;
do

Solve Pr
n in (21) and obtain the solution p∗

rn;
λn+1 = EElb (p

∗
rn, p̄

t
r);

n = n+ 1;
while F (p∗

r(n−1), p̄
t
r, λn) > ϵ

Set t = t+ 1;
Set p̄t

r = p∗
r(n−1);

end while
Scale p∗

rn to meet the constraints (9) and (10).
else

pir = Ith
LBr

, for i = 1, . . . ,Ks.
end if

IV. NUMERICAL RESULTS

In this Section, we study and benchmark the performance of
the proposed distributed optimal power allocation algorithm.
In our outdoor primary system, the users are uniformly dis-
tributed over a 100 m by 100 m area. The secondary APs
are in an area of 125 m by 125 m room, and secondary
users are uniformly distributed inside the room. We consider a
simplified pathloss model with a pathloss exponent of 3.7 and
thermal noise with σ2 = −92 dBm. Local scattering spatial
correlation model is considered for the channel gains. EE
averaged over 100 simulation setups of uniformly distributed
users are shown. We set B = 20 MHz, τc = 2000, and τp = 8.
All results are shown for six secondary APs with four antennas
each, serving four secondary users and shares spectrum with
five antenna BS serving four primary users.

Figure 2 compares the performance of the proposed dis-
tributed algorithm with the centralized algorithm proposed
in [9]. EE as a function of Pmax is shown. For small values of
Pmax, the distributed approach matches with the centralized
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Fig. 2. Comparison with centralized approach: EE versus Pmax for different
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Fig. 3. Comparison of distributed power allocation algorithms: EE as a
function of Pmax.

approach. Here, the transmit power constraint is active and
the average interference at the primary user is below Ith.
Hence, the EE is limited by the Pmax and it increases as Pmax

increases. We refer to it as power constrained regime. For large
values of Pmax, the interference constraint becomes active.
Here, the Ith limits the total transmit power, which is lower
than the Pmax. We refer to this as interference constrained
regime. Here, for Ith/σ

2 = 0 dB, after Pmax = 10 dBm,
the EE decreases and then saturates for distributed approach.
However, it does not decrease for the centralized approach
due to joint optimization at the CPU. For Ith/σ

2 = −6 dB,
EE saturates for both approaches. At Pmax = 10 dBm,
the distributed approach achieves 85% EE of the centralized
approach for Ith/σ

2 = 0 dB and Ith/σ
2 = −6 dB. For

Pmax ≥ 20 dBm, distributed optimal uses equal power in (22),
which allows higher power for higher Ith and yields lower EE.

We now benchmark the proposed distributed optimal algo-
rithm with other distributed approaches.

Zero-Power Approach: Here, the rth secondary AP formu-
lates its local optimization problem by substituting zeros for
the power allocation coefficients of other APs. It substitutes,
pil = 0, l ̸= r, i = 1, . . . ,Ks in (8), and obtains pir that
maximizes it subject to the constraints using the convex lower
bound approach described in Section III-A. Finally, all the APs
transmit with the Ks power allocation variables solved locally.

Path-Loss Based Approach [1, Sec. 7.2.3]: Let βir =
Trace (Rir) /N . For the kth secondary user, the AP r allocates
pkr = Pmax (βkr)

0.5
/
(∑Ks

i=1 (βir)
0.5
)

, which satisfies the

transmit power constraint. For a fair comparison, we scale the
above power allocation to satisfy the interference constraint.

Fig. 3 compares the performance of the distributed optimal
algorithm with the above two distributed approaches. For small
Pmax, the performance of the scalable distributed approach
matches with the distributed optimal. However, for large Pmax,
the distributed optimal performs better. At Pmax = 30 dBm, it
yields 12% and 9% higher EE than the scalable distributed ap-
proach for Ith/σ2 = 0 dB and Ith/σ

2 = −3 dB, respectively.
We also see that the distributed optimal performs significantly
better than the single AP approach for all Pmax values. At
Pmax = 30 dBm, it yields 2.2× and 2× higher EE than the
single AP approach for Ith/σ2 = 0 dB and Ith/σ

2 = −3 dB,
respectively.

V. CONCLUSION

We proposed a distributed downlink power allocation algo-
rithm, which improved EE of a secondary cell-free system.
It reduced computational complexity at the CPU and allowed
parallel computation locally at each secondary AP. We showed
that its performance matched with the centralized approach in
the power-constrained regime with small Pmax. Furthermore,
we demonstrated that tight interference-constraints can lead
to decrease in the EE as Pmax increases. Our performance
benchmarking showed that the proposed algorithm performed
better than the simpler path-loss based power allocation and
the zero power approach.
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