EE-668: Massive MIMO for 5G Communications: Design and Analysis

Homework 1

Question 1. Given a n-dimensional standard Gaussian random vector $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_n)$, prove that its squared norm $||\mathbf{w}||^2$ is chi-square distributed with *n* degrees of freedom. For an orthogonal matrix \mathbf{Q} (i.e., $\mathbf{Q}^T \mathbf{Q} = \mathbf{Q} \mathbf{Q}^T = \mathbf{I}$), show that $\mathbf{Q}\mathbf{w}$ is also standard Gaussian random vector.

Question 2. Given a Gaussian random vector $\mathbf{x} \sim \mathcal{N}(\mu, \mathbf{C})$, show that the components of the random vector $\mathbf{y} = \mathbf{A}\mathbf{x}$ (assume \mathbf{A}^{-1} exists) are jointly Gaussian. Use the transformation of RVs to find the joint pdf of the components in \mathbf{y} and show that it takes a Gaussian form.

Question 3. Let w(t) be white Gaussian noise with power spectral density $\frac{N_o}{2}$. Let $\mathbf{s}_1, \ldots, \mathbf{s}_M$ be a set of finite orthonormal waveforms (i.e., orthogonal and unit energy), and define $z_i = \int_{-\infty}^{\infty} w(t) s_i(t) dt$. Find the joint distribution of \mathbf{z} .

Question 4. Let \mathbf{x} be an n-dimensional i.i.d complex Gaussian random vector. The real and imaginary parts of its components are distributed as $\mathcal{N}(\mathbf{0}, \mathbf{K}_x)$ where \mathbf{K}_x is a 2 × 2 covariance matrix. Suppose \mathbf{U} is a unitary matrix (i.e., $\mathbf{U}^H \mathbf{U} = \mathbf{U}\mathbf{U}^H = \mathbf{I}$). Identify the conditions on \mathbf{K}_x under which $\mathbf{U}\mathbf{x}$ has the same distribution as \mathbf{x} .

Question 5. If $W = W_r + jW_i$ is circular symmetric complex Gaussian random variable, i.e., $W \sim \mathcal{CN}(0,1)$, prove that the envelope $r = |W| = \sqrt{W_r^2 + W_i^2}$ is Rayleigh distributed and its power r^2 is exponential distributed.