EE-668: Massive MIMO for 5G Communications: Design and Analysis

Assignment 3

Question 1. Prove below statements

- 1. Entropy of a random variable is non-negative.
- 2. Entropy of a random variable X is equal to zero only when it takes one value a with probability 1, i.e., $\Pr(X = a) = 1$.
- 3. Prove that uniform distribution maximizes the entropy among all the probability distributions p(x) which are nonzero over a finite range $x \in [a, b]$
- 4. Prove that exponential distribution maximizes the entropy among all the probability distributions p(x) which are nonzero over a semi-infinite range $x \in [0, \infty]$ and has a given mean $\mu < \infty$.

Question 2. Show that the entropy of multivariate Gaussian random vector $\mathbf{x} \sim \mathcal{N}(\mu, \Sigma)$ is given by

$$h[x] = \frac{1}{2} \log_2 ((2\pi e)^n |\Sigma|),$$

where n is the dimension of the random vector \mathbf{x} .

Question 3. Prove

- 1. The estimated channel coefficient \hat{g}_k^m and estimation error \tilde{g}_k^m are jointly gaussian.
- 2. The elements of $\mathbf{N} = \mathbf{W}_p \mathbf{\Phi}$ are i.i.d $\mathcal{CN}(0,1)$ when \mathbf{W}_p is an $M \times \tau_p$ matrix with i.i.d. $\mathcal{CN}(0,1)$ elements and $\mathbf{\Phi}$ is a $\tau_p \times K$ matrix such that $\mathbf{\Phi}^H \mathbf{\Phi} = I_K$.

Question 4. For an $m \times n$ matrix **B**, $n \times m$ matrix **D**, and $n \times 1$ vectors **a** and **b**, prove the following

- 1. Optimal **a** that maximizes $\frac{|\mathbf{a}^H \mathbf{b}|^2}{\mathbf{a}^H \mathbf{B} \mathbf{a}}$ is given by $\mathbf{B}^{-1}\mathbf{b}$.
- 2. $B^{-1}a = (1 + a^H B^{-1}a)(B + aa^H)^{-1}a.$
- 3. $[BD + I_m]^{-1}B = B[DB + I_n]^{-1}.$