EE-668: Massive MIMO for 5G Communications: Design and Analysis

Programming assignment 1

Question 1. Generate N samples of a real Gaussian random variable (RV) X with zero mean and unit variance, i.e., $X \sim \mathcal{N}(0, 1)$. Let x_i denote the i^{th} sample.

- 1. Plot absolute value of the sample mean $|m_N|$, where $m_N = \sum_{i=1}^N x_i/N$, as a function of N for $N = 1, 10, 10^2, 10^3, 10^4, 10^5, 10^6$.
- 2. Plot sample variance $\sum_{i=1}^{N} (x_i m_N)^2 / N$ as a function of N for $N = 1, 10, 10^2, 10^3, 10^4, 10^5, 10^6$.
- 3. Comment on the convergence of mean and variance.

Question 2. Plot the complementary CDF of $X \sim \mathcal{N}(0,1)$, i.e. $Q(a) = \Pr(X > a)$ and its bounds.

$$\frac{1}{\sqrt{2\pi}a} \left(1 - \frac{1}{a^2} \right) e^{-\frac{a^2}{2}} < Q(a) < e^{-\frac{a^2}{2}}, a > 1.$$

Question 3. Consider a two-dimensional Gaussian ransom vector with mean vector μ and covariance matrix **C**, i.e., $\mathbf{x} \sim \mathcal{N}(\mu, \mathbf{C})$. Plot the contour plots of the probability density function of X, when.

1.
$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
, $\mathbf{C} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.
2. $\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $\mathbf{C} = \begin{bmatrix} 0.5 & 0 \\ 0 & 1.5 \end{bmatrix}$.
3. $\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $\mathbf{C} = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix}$.
4. $\mu = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$, $\mathbf{C} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$.
5. $\mu = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$, $\mathbf{C} = \begin{bmatrix} 1 & 0.2 \\ 0.2 & 2 \end{bmatrix}$

Question 4. Generate two independent Gaussian RVs X_R and X_I such that $X_R \sim \mathcal{N}(m_r, \sigma_r^2)$ and $X_I \sim \mathcal{N}(m_i, \sigma_i^2)$. Let $X = X_R + jX_I$ be a complex Gaussian RV. Compute probability density function of X, for x = 1 + j, -0.3660 + j1.3660i, 0.3660 + j1.3660 and compute $\mathbb{E}[X^2], \mathbb{E}[|X|^2]$, and $\mathbb{E}[|X|^4]$ for the below three cases

- 1. $m_r = 0, m_i = 0, \sigma_r^2 = 0.5, \sigma_i^2 = 0.5.$
- 2. $m_r = 1, m_i = 1, \sigma_r^2 = 0.5, \sigma_i^2 = 0.5.$
- 3. $m_r = 0, m_i = 0, \sigma_r^2 = 1.5, \sigma_i^2 = 0.5.$

Comment on the observations.

List of useful MATLAB functions

- a) randn
- b) mean
- c) var
- d) sqrt
- e) erfc
- f) qfunc
- g) contour
- f) meshgrid