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Exploiting Power Adaptation With Transmit
Antenna Selection for Interference-Outage
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Abstract— In underlay spectrum sharing, the interference
constraint limits transmissions by the secondary transmitter,
which concurrently accesses the spectrum, to protect the primary
user from excessive interference. Transmit antenna selection
enables a secondary user to overcome the limitations imposed
by the interference constraint using low-complexity hardware.
We develop an optimal and novel joint antenna selection and
power adaptation rule that minimizes the average symbol error
probability (SEP) of a secondary user that is subject to two
practically well-motivated constraints. The first is the less-studied
but general interference-outage constraint, which limits the
probability that the interference power at the primary receiver
exceeds a threshold. The second constraint limits the peak
transmit power of the secondary transmitter. We show that the
optimal rule for the interference-outage constraint has a novel
structure that is markedly different from the rules considered in
the literature. We then present an insightful geometric interpre-
tation of its structure. Using this, we also propose a practically
amenable and near-optimal variant of the optimal rule called
the linear rule, and analyze its performance. Our numerical
results show that the optimal rule reduces the average SEP by
one to two orders of magnitude compared to the rules in the
literature.

Index Terms— Spectrum sharing, underlay, antenna selection,
power adaptation, interference outage.

I. INTRODUCTION

THE demand for high wireless data rates, which require
large amounts of wireless spectrum, has seen a tremen-

dous increase over the years. However, enough bandwidth is
not available for the upcoming wireless technologies in the
sub-6 GHz bands, which have favorable propagation charac-
teristics [2], [3]. To address this pressing issue, the regula-
tory authorities are now releasing spectrum bands for shared
and unlicensed operations [4], [5]. For example, the Federal
Communications Commission has opened up 1.2 GHz of
spectrum in the 6 GHz band in USA [5], which is currently
occupied by the primary users (PUs) such as satellite services,
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to be shared by unlicensed secondary users (SUs) such as
5G new radio (NR) unlicensed and IEEE 802.11ax/be [3].
Other wireless standards such as the citizen’s broadband radio
service and MulteFire are also based on the coexistence
of new SUs with the existing PUs [6]. These SUs can
reuse the spectrum so long as they do not cause excessive
interference to the existing PUs. The interference constraint,
which effectively specifies what ‘excessive’ means, plays a
key role in driving the transmission strategy of the SU and its
performance.

In underlay spectrum sharing, an SU transmits even when
the PU is using the spectrum but is subject to constraints
on the interference it causes to the primary receiver (PRx).
It is appealing because it improves the spectrum utilization
significantly and is practically feasible [7]. While these inter-
ference constraints protect the PU from interference, they can
significantly limit the SU’s performance [8]. To overcome
these challenges, low hardware complexity multiple antenna
techniques such as hybrid precoding [9], spatial modula-
tion [10], and antenna selection [8], [11] have been studied.
In hybrid precoding, the secondary transmitter (STx) transmits
a signal that is combined in the digital domain and in the
analog domain [12]. Whereas, spatial modulation selects an
antenna based on the symbol to be transmitted [13]. In transmit
antenna selection (TAS), which is the focus of this paper,
the STx dynamically selects one among multiple antennas
depending on the instantaneous channel state, connects it to
the single available radio frequency (RF) chain, and transmits
data to the secondary receiver (SRx) [14]. This switching
happens once in a coherence interval [14]. It improves the
SU’s performance with a hardware complexity comparable to
a single antenna system [8], [15]–[18].

In conventional interference-unconstrained systems,
the antenna selected and the transmit power depend only on
the channel gains between the transmitter and the receiver [19].
However, antenna selection and power adaptation (ASPA) in
an underlay spectrum sharing system must also consider the
STx to PRx (STx-PRx) channel gains because it needs to
simultaneously control the interference at the PRx. Consider,
for example, the peak interference constraint, which limits
the instantaneous interference power at the PRx [17], [18].
In [17], the transmit antenna with the smallest STx-PRx
channel power gain is selected. In [18], the antenna with the
highest ratio of the STx to SRx (STx-SRx) channel power
gain and STx-PRx channel power gain is instead selected.
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In both these references the transmit power of the STx is
inversely proportional to the STx-PRx channel power gain of
the selected antenna.

The ASPA rules turn out to be very different for stochastic
constraints such as the average interference constraint [20],
which limits the fading-averaged interference power at the
PRx, and the interference-outage constraint [21], which limits
the probability that the instantaneous interference power at
the PRx exceeds a threshold. We discuss them in more detail
below.

1) Average Interference Constraint: For an STx that trans-
mits with peak power or with zero power, which we
refer to as on-off power adaptation, the optimal rule that
minimizes the symbol error probability (SEP) selects the
antenna that minimizes a net cost that is a linear function
of the STx-PRx channel power gain and an exponentially
decreasing function of the STx-PRx channel power
gain [22]. However, for an STx that varies the transmit
power as a continuous function of the channel power
gains, which we refer to as continuous power adaptation,
the optimal rule selects the antenna that maximizes the
ratio of the STx-SRx channel power gain and an affine
function of the STx-PRx channel power gain [20].

2) Interference-Outage Constraint: For on-off power adap-
tation, the SEP-optimal antenna minimizes a net cost
that is a discontinuous function of the STx-PRx channel
power gain [21]. It is unlike any of the aforementioned
rules. However, the optimal ASPA rule for continuous
power adaptation is not known in the literature.

A. Focus and Contributions

In this paper, we consider an underlay secondary system
that is subject to the interference-outage constraint. While
the model of an STx transmitting to an SRx and causing
interference to a PRx has been studied in the literature, key
questions remain open. Firstly, which interference constraint to
impose and what its parameters should be are still open ques-
tions for the spectrum regulators and standards bodies. Though
the peak interference constraint has been well studied in the
literature [15]–[18], the implications of stochastic constraints
such as the interference-outage constraint on the secondary
system are not well understood. A change in something as
fundamental as the interference constraint leads to a different
optimization problem and a different optimal solution [16],
[21], [22]. Secondly, optimal continuous power adaptation
with TAS for the interference-outage constraint is not well
understood.

We make the following contributions:
1) Optimal Rule: We present a novel optimal TAS and

continuous power adaptation rule that minimizes the
average SEP, which is an important measure of the
reliability of communication [16], [18], [23], of an
interference-outage and peak transmit power constrained
underlay secondary system. It applies to a general class
of fading channel models with a continuous cumulative
distribution function (CDF), which includes the widely
studied Rayleigh, Rician, and Nakagami-m models.

Continuous power adaptation provides more flexibil-
ity to an STx in controlling its transmit power while
requiring the same channel state information (CSI) as
on-off power adaptation. The interference-outage con-
straint is a generalization of the conservative peak
interference constraint [15]–[18]. Given its stochastic
nature, it is suitable for practical scenarios with imper-
fect CSI at the STx, unlike the peak interference con-
straint [21], [24]. Moreover, it is suitable for primary
systems that offer delay or disruption-tolerant services
and are designed to tolerate outages due to co-channel
interference [21], [23].

2) Geometric Characterization and Linear Rule: The opti-
mal rule assigns a transmit power and net cost to each
antenna and selects the antenna with the lowest net cost.
We present an insightful geometric characterization of
the optimal transmit power and the net cost as a function
of the STx-SRx and STx-PRx channel power gains.
We exploit it to develop a new and simpler rule called
the linear rule.

3) Performance Analysis: We derive bounds for the aver-
age SEP and the interference-outage probability of the
linear rule that apply to any fading model with a
continuous CDF. The interference-outage bound yields
a computationally-simpler way to implement the linear
rule in practice. We show that these expressions simplify
considerably in the asymptotic regime of large transmit
power.

4) Benchmarking and Impact of Imperfect CSI: Our numer-
ical results show that the optimal rule can achieve a
one to two orders of magnitude lower SEP than the
rules considered in the literature [16]–[18], [21]. They
also show that imperfect STx-SRx CSI and imperfect
STx-PRx CSI have different impacts on the average SEP
and the interference-outage probability.

We note that our derivation of the optimal ASPA rule
for the interference-outage constraint is different from the
ones for the peak interference constraint [16]–[18] or the
average interference constraint [20], [22]. It applies to all
fading models with a continuous CDF. It is more involved
and different from that for on-off power adaptation in [21].
Also, the structure of the optimal rule cannot be inferred
from the above ASPA rules. For example, for the peak
interference constraint, the transmit power is independent of
the STx-SRx channel power gain [16]–[18], while for the
average interference constraint, it is a continuous function
of the ratio of the STx-SRx and STx-PRx channel power
gains [20]. On the other hand, the transmit power of our
ASPA rule is a discontinuous function of both STx-SRx and
STx-PRx channel power gains. Consequently, its average SEP
and interference-outage probability analysis turns out to be
very different. Moreover, the impact of imperfect CSI with
continuous power adaptation is different from that in [21],
while [20], [22] consider only perfect CSI.

B. Outline and Notation

Section II presents the system model and the problem
statement. The optimal ASPA rule is derived in Section III.
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The linear rule is developed and analyzed in Section IV. Per-
formance benchmarking and numerical results are presented
in Section V. Our conclusions follow in Section VI.

Notation: Scalar variables are written in normal font, vector
variables in bold font, and sets in calligraphic font. The
probability of an event A and the conditional probability of
A given B are denoted by Pr (A) and Pr (A|B), respectively.
EX [·] denotes expectation with respect to a random variable
(RV) X . The O(·) notation is as per the Bachmann-Landau
notation [25, Chap. 3]. The null set is denoted by ∅. And,
I{a} denotes the indicator function; it is 1 if a is true and is
0 otherwise.

II. SYSTEM MODEL AND PROBLEM STATEMENT

The system model is shown in Figure 1. It consists of an
STx that communicates with an SRx, and, in the process,
interferes with a PRx that is equipped with a single antenna.
The STx dynamically selects one among Nt transmit antennas
and connects it to the single RF chain that is available [14],
[19]. The SRx is equipped with Nr antennas and employs
either maximal ratio combining (MRC) or selection combining
(SC) [26]. The instantaneous channel power gain from the
kth antenna of the STx to the nth antenna of the SRx is
denoted by hnk, and the instantaneous channel power gain
from the kth antenna of the STx to the PRx is denoted by gk.
We assume that the STx-SRx channel gains are independent
and identically distributed (i.i.d.) RVs, and so are the STx-PRx
channel gains [8], [16]–[18].

The instantaneous SEP when the STx transmits using
antenna k with power Pk is denoted by S(Pk, hk). It is given
by [26, (9.7)], [21]

S(Pk, hk) ≈ c1 exp
(
−c2

Pkhk

σ2

)
, for 1 ≤ k ≤ Nt, (1)

where c1 and c2 are modulation-dependent parameters, and
σ2 = σ2

t + σ2
i is the sum of thermal noise power σ2

t and the
interference power σ2

i at the SRx due to transmissions from
the primary transmitter (PTx).1 Here, hk = max1≤n≤Nr{hnk}
for SC and hk =

∑Nr

n=1 hnk for MRC. Let h � [h1, . . . , hNt ]
and g � [g1, . . . , gNt ].

CSI Model: Our CSI model, which is similar to those
in [16]–[18], [20], [21], is as follows:

i) STx: It knows the STx-SRx channel power gains h and
the STx-PRx channel power gains g. It does not need the
phase information of any of these channel gains. When the
secondary and primary systems operate in the time division
duplexing mode, it can obtain h and g by making use of
reciprocity [28]. However, when they operate in the frequency
division duplexing mode, it can obtain h using feedback and
g using a hidden power-feedback loop technique [29]. Other
techniques to obtain g are summarized in [30].

ii) SRx: It performs coherent demodulation. For this, it needs
to know only the complex baseband channel gains from the

1Implicit in this summation and (1) is the assumption that the interference is
Gaussian. This assumption is physically justified by the central limit theorem
when there are multiple PTxs and is valid even with one PTx if it uses a
constant amplitude signal [23]. This assumption is widely used in the literature
due to its tractability [20], [22], [23], [27].

Fig. 1. System model that consists of an STx with Nt transmit antennas and
one RF chain. It transmits data to an SRx with Nr antennas, which causes
interference to a PRx.

transmit antenna selected by the STx to itself. This can be
estimated using the pilot symbols embedded with the data.

A. Constraints and Problem Statement

An ASPA rule φ is a mapping from (R+)Nt × (R+)Nt

to {1, 2, . . . , Nt} × [0, Pmax]. It maps (h,g) to the selected
antenna s ∈ {1, 2, . . . , Nt} and the transmit power Ps ∈
[0, Pmax].

The STx is subject to the following two constraints:
1) Interference-Outage Constraint [21], [23]: The instan-

taneous interference power at the PRx is equal to
Psgs. An interference-outage happens when Psgs >
τ , where τ is the interference power threshold. The
interference-outage constraint can be stated as

Pr (Psgs > τ ) ≤ Omax, (2)

where Omax is the maximum allowed for the
interference-outage. The probability distributions of h
and g and the ASPA rule together determine this prob-
ability.

2) Peak Transmit Power Constraint [15], [16]: This limits
Ps to be less than or equal to a peak transmit power
Pmax.

Our goal is to derive an optimal rule φ∗ that minimizes the
average SEP of the secondary system that is subject to the
above two constraints. Our problem can be mathematically
stated as the following stochastically constrained optimization
problem P :

P : min
φ

Eh,g [S(Ps, hs)] , (3)

s.t. Pr (Psgs > τ ) ≤ Omax, (4)

0 ≤ Ps ≤ Pmax, (5)

(s, Ps) = φ(h,g). (6)

III. OPTIMAL RULE AND ITS BEHAVIOR

A. Optimal Rule

First, consider the interference-outage unconstrained
scenario. Since the instantaneous SEP is a monotonically
decreasing function of Pshs, it is easy to see that the optimal
rule should select the antenna with the highest STx-SRx
channel power gain and transmit with power Pmax. We shall
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refer to this as the unconstrained (UC) rule. It can be written
as

s = arg max
k∈{1,2,...,Nt}

{hk} and Ps = Pmax. (7)

Its interference-outage probability Ou (τ) is

Ou (τ) � Pr (Pmaxgs > τ) . (8)

Since the antenna selected by the UC rule is independent of
g and g1, . . . , gNt are i.i.d., it follows that

Ou (τ) = Pr (Pmaxg1 > τ ) = F c
g (τ/Pmax) , (9)

where F c
g (·) denotes the complementary CDF of the identi-

cally distributed RVs g1, . . . , gNt .
When Ou (τ) ≤ Omax, which we shall refer as the uncon-

strained regime, the UC rule satisfies the constraint in (4) and
is optimal. However, when Ou (τ) > Omax, which we shall
refer to as the constrained regime, the UC rule does not satisfy
the interference-outage constraint. It, thus, cannot solve P .
We now develop the optimal rule for this regime using the
following three lemmas. Lemma 1 shows that selecting an
antenna and transmit power that minimizes an instantaneous
net cost (defined below) is optimal provided a penalty factor
λ∗ > 0 exists such that the interference-outage constraint is
met with equality. Lemma 2 presents a closed-form expression
for the transmit power of an antenna if it were selected to
transmit. Lemma 3 proves that the penalty factor λ∗ does
indeed exist and is unique.

Lemma 1: In the constrained regime, the following ASPA
rule (s∗, Ps∗) = φ∗(h,g) is optimal:

(s∗, Ps∗) � argmin
{(k,Pk) : k={1,2,...,Nt}, Pk∈[0,Pmax]}

{NCk} ,

(10)

where the net cost NCk of antenna k is given by

NCk � S(Pk, hk) + λI{Pkgk>τ}. (11)

This holds provided that the penalty factor λ > 0 can be set
to λ∗ such that the interference-outage probability is equal to
Omax, i.e., Pr (Ps∗gs∗ > τ) = Omax.

Proof: The proof is given in Appendix A.
Lemma 2: For antenna k, the transmit power Pk that min-

imizes its net cost NCk is given by

Pk =

⎧⎪⎨⎪⎩
Pmax, if Pmaxgk ≤ τ,

Pmax, if S
(

τ
gk

, hk

)
> S (Pmax, hk) + λ,

τ
gk

, else.

(12)

Proof: The proof is given in Appendix B.
These two lemmas imply that for every antenna k, the opti-

mal rule first computes the value of Pk in (12) and substitutes
this in (11). It then selects the antenna with the smallest net
cost.

Lemma 3: For any fading model with a continuous CDF
and 0 < Omax < Ou (τ), a unique λ∗ ∈ (0, c1) always exists
such that Pr (Ps∗gs∗ > τ) = Omax.

Proof: The proof is given in Appendix C.

Here, the optimal penalty factor λ∗ has to be computed
numerically, which is typical in several constrained optimiza-
tion problems [26], [27]. In Section IV, we shall present a
simpler ASPA rule and a computationally simpler way of
determining its penalty factor. The above approach can be
generalized to optimize other performance metrics such as
ergodic rate and rate-outage probability, but the optimal rules
so obtained will be different.

B. Behavior of the Optimal Rule

A key insight from (12) is that the transmit power Pk and
the net cost NCk of antenna k take different values in the
following three mutually exclusive regions of (hk, gk):

1) If an antenna k belongs to the region

Uk = {(hk, gk) : Pmaxgk ≤ τ} , (13)

it transmits with peak power, i.e., Pk = Pmax, and does
not cause an interference-outage. Hence, we shall call
it an outage-compliant peak power (OCPP) antenna. Its
net cost is NCk = S (Pmax, hk).

2) If an antenna k belongs to the region

Ck = {(hk, gk) : Pmaxgk > τ,

S (τ/gk, hk) ≤ S (Pmax, hk) + λ}, (14)

it transmits with power Pk = τ/gk < Pmax and does not
cause an interference-outage. Hence, we shall call it an
outage-compliant power constrained (OCPC) antenna.
Its net cost is NCk = S (τ/gk, hk).

3) If an antenna k belongs to the region

Ik = {(hk, gk) : S (τ/gk, hk) > S (Pmax, hk) + λ} ,

(15)

it again transmits with Pmax but it causes an
interference-outage because Pmaxgk > τ . Hence,
we shall call it an outage-inducing (OI) antenna. Its net
cost is NCk = S (Pmax, hk) + λ. We see here that λ is
the penalty of an OI antenna for causing an interference-
outage.

The three regions are shown in Figure 2a. The behavior of
the optimal rule depends on λ as follows:

1) λ = 0: From (14) and (15), we get Ck = ∅ and Ik =
{(hk, gk) : Pmaxgk > τ}. Hence, Pk = Pmax, for all k ∈
{1, 2, . . . , Nt}, and the optimal rule reduces to the UC
rule in (7).

2) 0 < λ < c1: The optimal rule causes an
interference-outage only if it selects an OI antenna.
It transmits with the peak power Pmax only if it selects
an OCPP antenna or an OI antenna.

3) λ = c1: Here, Ik = ∅ and Ck =
{(hk, gk) : Pmaxgk > τ} because S (τ/gk, hk) ≤ c1.
Hence, Pk = Pmax for Pmaxgk ≤ τ , and Pk = τ/gk,
otherwise. Since Pkgk ≤ τ , for all k, and the SEP is a
monotonically decreasing function of Pkhk, the optimal
rule reduces to s∗ = argmax1≤k≤Nt

{Pkhk}. This is
equivalent to the rule specified in [16].
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Fig. 2. Illustrations of the OCPP, OCPC, and OI regions and transmit power
of antenna k in them as a function of hk and gk.

IV. SIMPLER LINEAR RULE, ANALYSIS, AND INSIGHTS

The involved form of the boundary of the OCPC and OI
regions in the optimal rule and the numerical search needed to
determine λ∗ motivate the simpler linear rule that we present
below.

Based on Section III-B, we first specify the linear rule in
terms of its corresponding three regions OCPP (Ûk), OCPC
(Ĉk), and OI (Îk) for any antenna k. We obtain Ĉk and Îk

by dropping the S (Pmax, hk) term in the inequalities in (14)
and (15), respectively, and set Ûk = Uk. The rationale behind
this will become clear when we analyze the linear rule.
Using (1) and algebraic simplifications, the three regions for
this rule can be written as

OCPP : Ûk = {(hk, gk) : Pmaxgk ≤ τ} , (16a)

OCPC : Ĉk = {(hk, gk) : Pmaxgk > τ, gk ≤ mhk} , (16b)

OI : Îk = {(hk, gk) : Pmaxgk > τ, gk > mhk} , (16c)

where

m � −c2τ

σ2 ln (λ/c1)
, for λ ∈ (0, c1), (17)

is the slope of the line that divides the OCPC and OI regions.
This is illustrated in Figure 2b. For λ = 0, m � 0 and for
λ = c1, m � ∞.

Linear Rule Specification: In terms of the above three
regions, the linear rule can be specified as follows. It first
computes the power P̂k of antenna k as follows:

P̂k =
{

τ
gk

, if (hk, gk) ∈ Ĉk,

Pmax, else.
(18)

It then selects the antenna s = arg min1≤k≤Nt

{
N̂Ck

}
, where

N̂Ck � S(P̂k, hk) + λI{ �Pkgk>τ}, for 1 ≤ k ≤ Nt, (19)

and transmits with power P̂s.

The relationship between the linear and optimal rules
depends on λ as explained below:

• λ = 0: Here, the inequality gk > mhk in (16c), which
is equivalent to S (τ/gk, hk) > λ = 0, is always true.
Substituting this in (16b) and (16c) yields Ĉk = ∅

and Îk = {(hk, gk) : Pmaxgk > τ}. From Section III-B,
we can see that Ĉk = Ck and Îk = Ik. Thus, the linear
rule becomes equivalent to the optimal rule.

• 0 < λ < c1: The difference between the OCPC and OI
regions of the linear and optimal rules decreases as Pmax

increases since the term S (Pmax, hk), which is dropped to
obtain Ĉk and Îk, is an exponentially decreasing function
of Pmax. Thus, the linear rule becomes closer to the
optimal rule as Pmax increases.

• λ = c1: As above for λ = 0, we can again show that
the linear rule is equivalent to the optimal rule.

Result 1: Given λ, the average SEP of the linear rule lower
bounds that of the optimal rule.

Proof: The proof is given in Appendix D.
Note: For a given λ, the interference-outage probabilities

of the two rules are different. In fact, the interference-outage
probability of the linear rule upper bounds that of the optimal
rule. Our model, ASPA rules, and analysis can be extended to
a system with multiple antennas at the PRx by constraining
the outage probability of the total interference power at the
PRx. The optimal and linear rules are obtained by replacing
gs with the sum of channel power gains from the STx antenna
s to all the antennas at the PRx.

A. Performance Analysis

We now derive general bounds for the average SEP and
the interference-outage probability Oλ of the linear rule that
apply to any fading model and any value of Nt and Nr.
Let E [hnk] = μh and E [gk] = μg. Let Ω = Pmaxμh/σ2

denote the peak fading-averaged signal-to-interference-plus-
noise ratio (SINR) at the SRx. Let

βm =
τ

mPmax
,

denote the value of hk where the line gk = mhk intersects
the horizontal line gk = τ/Pmax. Let Ûk � {(hk, gk) ∈ Ûk},
Ĉk � {(hk, gk) ∈ Ĉk}, and Îk � {(hk, gk) ∈ Îk} denote the
events in which (hk, gk) belongs to the OCPP, OCPC, and OI
regions, respectively.

1) Average SEP
(
SEP

)
: Let E denote the error event. Then,

SEP is given by

SEP = Eh,g [Pr (E|h,g)] = NtEh,g [Pr (s = 1, E|h,g)] ,
(20)

where the second equality follows by symmetry. Using the law
of total probability, we have

Pr (s = 1, E|h,g) =
∑

R∈{�U1, �C1,�I1}
Pr (s = 1, R, E|h,g) .

(21)

Using the chain rule, we get Pr (s = 1, R, E|h,g) = (s = 1,

R|h,g)Pr (E|s = 1, R,h,g) , for R ∈
{

Û1, Ĉ1, Î1

}
.
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Substituting the transmit power in each of the regions as
per (18), we get

Pr (s = 1, E|h,g) = Pr
(
s = 1, Û1|h,g

)
S (Pmax, h1)

+Pr
(
s = 1, Ĉ1|h,g

)
S (τ/g1, h1)

+Pr
(
s = 1, Î1|h,g

)
S (Pmax, h1) .

(22)

Substituting (22) in (20) and using the law of total expectation,
we get

SEP = TOCPP + TOCPC + TOI, (23)

where

TOCPP = NtEh1

[
Pr
(
s = 1, Û1|h1

)
S (Pmax, h1)

]
, (24)

TOCPC = NtEh1,g1

[
Pr
(
s = 1, Ĉ1|h1, g1

)
S (τ/g1, h1)

]
,

(25)

TOI = NtEh1

[
Pr
(
s = 1, Î1|h1

)
S (Pmax, h1)

]
. (26)

The above terms TOCPP, TOCPC, and TOI correspond to the
average SEPs due to the OCPP, OCPC, and OI regions,
respectively. We simplify these terms using the four lemmas
below. Lemmas 4 and 5 deal with TOCPP, Lemma 6 with TOCPC,
and Lemma 7 with TOI.

Lemma 4: The conditional probability of s = 1 and antenna
1 being in Û1 given h1 equals

Pr
(
s = 1, Û1|h1

)
= (1 − Ou (τ)) [ Tuu(h1) + Tuc(h1)

+Tui(h1)]
Nt−1

, (27)

where

Tuu(h1) = Pr
(
h2 < h1, Û2

)
,

Tuc(h1) = Pr
(
(τh2/g2) < Pmaxh1, Ĉ2

)
,

Tui(h1) = Pr
(
S (Pmax, h2) + λ > S (Pmax, h1) , Î2

)
.

Proof: The proof is given in Appendix E.
Lemma 4 leads to the following upper bound for TOCPP.
Lemma 5: The average SEP due to the OCPP region is

bounded as TOCPP ≤ BOCPP, where

BOCPP = Nt (1 − Ou (τ))
∫ βm

0

[
(1 − Ou (τ))Fh (h1)

+Ou (τ) Fh (ω(h1))
]Nt−1

S (Pmax, h1) fh (h1) dh1

+Nt (1 − Ou (τ))
∫ ∞

βm

[
(1 − Ou (τ))Fh (h1)

+Ou (τ)
]Nt−1

S (Pmax, h1) fh (h1) dh1, (28)

where Fh (·) and fh (·) denote the CDF and probability density
function (PDF), respectively, of the i.i.d. RVs h1, . . . , hNt , and

ω(h1) � −σ2 ln
(
e−

c2Pmax
σ2 h1 − λ

c1

)/
(c2Pmax).

Proof: The proof is given in Appendix F.
For example, for Rayleigh fading and MRC, we have

Fh (x) = 1 − e
− x

μh

Nr−1∑
n=0

1
n!

(
x

μh

)n

, for x ∈ [0,∞).

And, for Rayleigh fading and SC, we have

Fh (x) =
(
1 − e

− x
μh

)Nr

, for x ∈ [0,∞).

In a similar manner, we can show the following for the
OCPC region:

Pr
(
s = 1, Ĉ1|h1, g1

)
= I{Pmaxg1>τ,g1≤mh1} [Tcu(h1, g1)

+Tcc(h1, g1) + Tci(h1, g1)]
Nt−1 ,

(29)

where

Tcu(h1, g1) = Pr

(
Pmaxh2 <

τh1

g1
, Û2

)
, (30)

Tcc(h1, g1) = Pr

(
h2

g2
<

h1

g1
, Ĉ2

)
, (31)

Tci(h1, g1) = Pr
(
S (Pmax, h2) + λ > S (τ/g1, h1) , Î2

)
.

(32)

This leads to the following expression for TOCPC.
Lemma 6: The average SEP of the OCPC region can be

simplified as follows:

TOCPC = Nt

∫ ∞

τ
Pmax

∫ ∞

g1
m

[Ω(h1, g1)]
Nt−1 S (τ/g1, h1)

×fh (h1) fg (g1) dh1 dg1, (33)

where Ω(h1, g1) � Fh (τh1/ (Pmaxg1)) (1 − Ou (τ)) +∫∞
τ/Pmax

Fh (h1x/g1) fg (x) dx.
Proof: The proof is given in Appendix G.

Lastly, in the OI region, we can show that

Pr
(
s = 1, Î1|h1

)
= Pr

(
Î1|h1

)
[ Tiu(h1) + Tic(h1)

+Tii(h1)]
Nt−1

, (34)

where

Tiu(h1) = Pr
(
S (Pmax, h2) > S(Pmax, h1) + λ, Û2

)
, (35)

Tic(h1) = Pr
(
S (τ/g2, h2) > S(Pmax, h1) + λ, Ĉ2

)
, (36)

Tii(h1) = Pr
(
h2 < h1, Î2

)
. (37)

This leads to the following upper bound for TOI.
Lemma 7: The average SEP from the OI region is bounded

as TOI ≤ BOI, where

BOI = Nt

∫ βm

0

Ou (τ) [Fh (h1)]
Nt−1

S (Pmax, h1)

×fh (h1) dh1

+Nt

∫ ∞

βm

F c
g (mh1) [Fh (βm) + Ψ (βm)]Nt−1

×S (Pmax, h1) fh (h1) dh1, (38)

where Ψ (βm) =
∫∞

βm
F c

g (mx) fh (x) dx.
Proof: The proof is given in Appendix H.

Combining (28), (33), and (38) yields following general
upper bound for the average SEP:

SEP ≤ BOCPP + TOCPC + BOI. (39)
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Behavior of Average SEP: i) As Pmax increases, TOCPP

decreases because the OCPP region Ûk (cf. (16a)) shrinks
and S (Pmax, hk) decreases. TOCPC increases for small Pmax

and saturates for large Pmax because the OCPC region Ĉk

(cf. (16b)) increases for small Pmax and then saturates. TOI

increases for small Pmax and then decreases. ii) As τ increases,
TOCPP increases because the OCPP region Ûk (cf. (16a))
increases. TOCPC decreases because S (τ/g1, h1) decreases
exponentially. TOI decreases slowly for small τ but decreases
faster for large τ .

To gain more insights, consider Rayleigh fading and
Nr = 1. In this case, the expression for BOCPP in (28) reduces
to

BOCPP = Ntc1

∑
j≥0,k≥0,n≥0,
j+k+n=Nt−1

(Nt − 1)!
j!k!n!

(1 − Ou (τ))j+1

Ou (τ)−k

×
∞∑

l=0

(−1)j+k+l
(

λ
c1

)l
(

1 −
(

λ
c1

) j+k+1
c2Ω +1−l

)
l! (j + k + 1 + c2Ω(1 − l))

×
Γ
(

k
c2Ω

+ 1
)

Γ
(

k
c2Ω

− l + 1
) + Ntc1

Nt−1∑
k=0

(
Nt − 1

k

)

× (−1)k(1 − Ou (τ))k+1

k + 1 + c2Ω

(
λ

c1

) k+1
c2Ω +1

. (40)

TOCPC in (33) reduces to

TOCPC =
Ntc1

μgμh

∫ ∞

τ
Pmax

∫ ∞

g1
m

exp
(
−c2τ

σ2

h1

g1
− h1

μh
− g1

μg

)
×
[
1 − (1 − Ou (τ))e−

τ
Pmaxμh

h1
g1

− Ou (τ) μhg1

μhg1 + μgh1
e
− τ

Pmaxμh

h1
g1

]Nt−1

dh1dg1. (41)

This can be further simplified by using the inequality (1 +
x)−1 ≥ e−x, for x ≥ 0, to bound (1 + μgh1/(μhg1))

−1.
Doing so yields TOCPC ≤ BOCPC, where

BOCPC = Ntc1

∑
j≥0,k≥0,n≥0,
j+k+n=Nt−1

(Nt − 1)!
j!k!n!

(−1)j+k(1 − Ou (τ))k

×
⎛⎝Ou (τ)j+1+

μg
mμh

1 + μg

mμh

(
λ

c1

) j+k
c2Ω +

jμgσ2

μhc2τ +1

−
[
(j + k + c2Ω) τ

μgPmax
+ j

]
Ou (τ)−k−c2Ω ej

×E1

[(
(j + k + 1 + c2Ω) τ

μgPmax
+ j

)
α

] )
, (42)

where α = 1 + mμh/μg and E1 [z] =
∫∞

z
(e−t/t) dt is the

exponential integral [31, pp. xxxv]. Similarly, BOI in (38)

reduces to

BOI =
Ntc1μg

c2Ωμg + mμh + μg

(
λ

c1

) 1
c2Ω+1

×
[
1 −

(
λ

c1

) 1
c2Ω

+
Ou (τ) μg

μg + mμh

(
λ

c1

) 1
c2Ω

]Nt−1

+
Nt−1∑
k=0

(
Nt − 1

k

)
(−1)kNtc1Ou (τ)

k + 1 + c2Ω

×
(

1 −
(

λ

c1

) k+1
c2Ω +1

)
. (43)

Combining (40), (42), and (43) yields the following
closed-form upper bound:

SEP ≤ BOCPP + BOCPC + BOI. (44)

2) Interference-Outage Probability:
Result 2: The interference-outage probability Oλ is

bounded as Oλ ≤ Bλ, where

Bλ = [Fh (βm) + Ψ (βm)]Nt − (1 − Ou (τ)) [Fh (βm)]Nt .

(45)

Proof: The proof is given in Appendix I.
Practical Implications: Consider the linear rule whose

penalty factor λ is obtained by solving Bλ = Omax. It satisfies
the interference-outage constraint since Bλ ≥ Oλ. This is
much simpler than solving the equation Oλ = Omax and makes
it easy to implement the linear rule. We will see in Section V
that this leads to a negligible degradation in the SEP.

To gain more insights, consider the example of Rayleigh
fading with SC. In this case, (45) simplifies to the following
closed-form expression:

Bλ =

(
Nr−1∑
n=0

(
Nr − 1

n

)
(−1)nNrOu (τ) μg

(n + 1)μg + mμh

(
λ

c1

)n+1
c2Ω

+ ΛNr

)Nt

− (1 − Ou (τ)) ΛNtNr , (46)

where Λ = 1 − (λ/c1)
1

c2Ω .

B. Asymptotic Behavior and Insights for Large Pmax

As mentioned, the linear and optimal rules become equiva-
lent to each other for large Pmax. Specifically, the three regions
reduce to Uk = Ûk → ∅, Ck = Ĉk → {(hk, gk) : gk ≤ mhk},
and Ik = Îk → {(hk, gk) : gk > mhk}.

Interference-Outage Probability: From (18) and (19), for
an OCPC antenna, we have P̂k = τ/gk and N̂Ck =
S (τ/gk, hk). From the definition of the slope m in (17),
the inequality gk ≤ mhk can be written as S (τ/gk, hk) ≤
λ ≤ S (Pmax, hk) + λ. Similarly, for an OI antenna,
we have P̂k = Pmax and N̂Ck = S (Pmax, hk) + λ ≥
S (τ/gk, hk). Thus, an OI antenna is selected only if all the
antennas are in the OI region. Since an interference-outage
happens only when an OI antenna is selected, we get
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Oλ = Pr (g1 > mh1, g2 > mh2, . . . , gNt > mhNt). Since the
channel power gains are i.i.d., it follows that

Oλ = [Pr (g1 > mh1)]
Nt =

[∫ ∞

0

F c
g (mh1) fh (h1) dh1

]Nt

.

(47)

For example, for Rayleigh fading and SC, (47) simplifies to

Oλ =

[
Nr−1∑
n=0

(
Nr − 1

n

)
(−1)nNrμg

(n + 1)μg + mμh

]Nt

. (48)

For Nr = 1, equating this with Omax yields the following exact
closed-form expression for λ:

λ = c1 exp

(
−c2τμh

σ2μg

(Omax)
1/Nt

(1 − (Omax)
1/Nt)

)
. (49)

This brings out how λ depends on Omax, τ , and Nt.
Average SEP: For large Pmax, S (Pmax, hk) → 0. Thus,

in (23), TOCPP → 0, TOI → 0, and SEP = TOCPC. Substituting
Pmax → ∞ in (33) yields

SEP = Nt

∫ ∞

0

∫ ∞

g1
m

[∫ ∞

0

Fh

(
h1

g1
x

)
fg (x) dx

]Nt−1

×S

(
τ

g1
, h1

)
fh (h1) fg (g1) dh1 dg1. (50)

For example, for Rayleigh fading with Nt = 2 and Nr = 1,
the above expression simplifies to

SEP = (2 + c2a)
(
λb − c1c2aec2aE1

[c2a

b

])
− λb2, (51)

where a = τμh/(σ2μg) and b = 1 −√
Omax.

V. NUMERICAL RESULTS AND PERFORMANCE

BENCHMARKING

We compare the performance of the optimal and linear
rules with the following ASPA rules: minimum interference
rule [17], maximum ratio rule [18], and maximum signal
power rule [16]. As originally proposed, these rules set the
transmit power as Pk = min{Pmax, τ/gk}. This leads to an
interference-outage probability of zero. In order to enable
them to take advantage of the non-zero interference-outage
probability Omax that is allowed, we generalize them using
the following probabilistic transmit power policy: Pk = Pmax

if Pmaxgk ≤ τ ; else,

Pk =
{

Pmax, with probability q,
τ
gk

, with probability 1 − q,
(52)

where q > 0 is numerically set such that the
interference-outage probability is equal to Omax.

The minimum interference rule selects the antenna s =
arg min1≤k≤Nt

{gk} and its transmit power Ps is as
per (52). The maximum ratio rule selects the antenna s =
arg max1≤k≤Nt

{hk/gk} and its transmit power Ps is as
per (52). The maximum signal power rule first computes Pk

as per (52) for each antenna k. It then selects the antenna
s = argmax1≤k≤Nt

{Pkhk} and transmits with power Ps.
In addition, to evaluate the gains from continuous power

adaptation, we also compare with the on-off rule [21] that
selects one among the Nt antennas and whose transmit power
is either Pmax or 0. The latter is denoted by s = 0 with h0 � 0
and g0 � 0. It selects the antennas as follows:

s = arg min
k∈{0,1,...,Nt}

{S (Pmax, hk) + αI{Pmaxgk>τ}}, (53)

where α is chosen such that Pr (Psgs > τ ) = Omax in the
constrained regime. Else, α = 0.

We show results for Rayleigh fading and set μh = −114 dB,
μg = −121 dB, and σ2

t = −114 dBm. The ratio of the
interference power at the SRx to the thermal noise power
is 2.2; hence, σ2 = σ2

t + σ2
i = −109 dBm. The peak

fading-averaged SINR Ω = Pmaxμh/σ2 is 10 dB for Pmax =
15 dBm.2 We use (c1, c2) = (0.5, 0.6) for QPSK [32, (13)],
(c1, c2) = (0.6, 0.18) for 8-PSK, and (c1, c2) = (0.8, 0.12) for
16-QAM.3 The simulation curves in all the figures are based
on symbol-level simulations and do not use the SEP formula
in (1).

Figure 3 benchmarks the average SEP of the optimal rule
and the linear rule with the above ASPA rules. They behave
differently in the following two regimes: (i) Unconstrained
regime (Ω ≤ 2.9 dB): Here, the optimal rule, the linear
rule, the maximum signal power rule, and the on-off rule are
the same as the UC rule. Hence, their SEPs are the same
and they decrease as Ω increases. (ii) Constrained regime
(Ω > 2.9 dB)4: Here, the penalty factor of each rule is chosen
such that its interference-outage probability is equal to Omax.
The SEPs of all the rules decrease as Ω increases and reach
error floors. This is because, for large Ω, the SEP is negligible
when the STx transmits with power Pmax. It is dominated by
the event in which the STx transmits with power τ/gk. The
error floor of the optimal rule is lower by a factor of 5.7,
5.7, 87.8, and 107.6 than that of the maximum signal power,
maximum ratio, minimum interference rules, and optimal TAS
rule with on-off power adaptation, respectively. Thus, the opti-
mal rule exploits the available CSI much more effectively.
We also see that the linear rule is near-optimal. This shows
that dropping S (Pmax, hk) in its design (cf. Section IV) makes
a negligible difference.

Figure 4 plots the average SEP of the linear rule as a
function of the normalized interference power threshold τ/σ2

for two constellations and for different values of Nt and Nr.
We compare its performance when the penalty factor λ is
obtained by equating the exact interference-outage probabil-
ity Oλ to Omax and when it is obtained by equating the
interference-outage upper bound Bλ in (45) to Omax. We see
that the difference in the average SEPs obtained using Oλ

and using Bλ is negligible. Thus, the linear rule can be
implemented in a near-optimal manner with a lower com-
plexity. In the constrained regime (τ/σ2 < 7.1 dB, λ > 0),

2This corresponds to a carrier frequency of 2.4 GHz, bandwidth of 1 MHz,
300 K noise temperature, path-loss exponent of 3.7, reference distance of
1 m, a distance of 100 m between the STx and SRx, and a distance of 150 m
between the STx and PRx for the simplified path-loss model [26, Chap. 2.6].

3The values for 8-PSK and 16-QAM are obtained by accurate curve-fitting;
the other values have been used in [16], [18].

4From (9), we can show that the constrained regime corresponds to Ω >
−τμh/(μgσ2 ln(Omax)), in general.
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Fig. 3. Performance benchmarking: Average SEP as a function of Ω for
different ASPA rules (Omax = 0.01, τ/σ2 = 3 dB, Nt = 4, Nr = 2, SC,
and QPSK).

Fig. 4. Linear rule: Average SEP as a function of τ/σ2 (Omax = 0.1,
Ω = 10 dB, and MRC).

the average SEP decreases as τ increases. This is because the
STx transmits with a higher power since the instantaneous
interference power allowed is higher. In the unconstrained
regime (τ/σ2 ≥ 7.1 dB, λ = 0), the average SEP reaches
a floor. This is because the linear rule becomes equivalent to
the UC rule, whose SEP is independent of τ . We also see that
the error floor decreases significantly as Nt or Nr increases.

Figure 5 plots the average SEP of the linear rule as a
function of Ω for different values of Nr. In the constrained
regime, the penalty factor λ is chosen such that the exact
interference-outage probability Oλ is equal to Omax. Also
shown are the general upper bound and asymptotic expressions
in (39) and (50), respectively, for both Nr values. We see that
this bound is tight for all Ω.5 We also see that the closed-form
upper bound in (44) for Nr = 1 tracks the simulation curve
well.

Impact of Imperfect CSI at the STx: We now present separate
results for imperfect estimates of h and g to understand their
impacts. They are obtained by the STx from corresponding
pilots using minimum mean square error channel estima-

5For Ω ≥ 18 dB, the simulation results of Nr = 2 case marginally exceed
the bound. This is because of the approximate nature of the SEP expression
in (1).

Fig. 5. Linear rule: Average SEP and its bound as a function of Ω for
different values of Nr (Omax = 0.1, τ/σ2 = 0 dB, Nt = 2, MRC, and
QPSK).

Fig. 6. Impact of imperfect CSI on average SEP and interference-outage
probability as a function of Ω (Omax = 0.1, Nt = 2, Nr = 2, SC, and
QPSK).

tion [21], [23], [24]. The pilot SNR is set to 15 dB. As before,
the secondary receiver SRx knows the complex channel gain
of the selected STx-SRx link perfectly.

Figures 6a and 6b plot the average SEP and the
interference-outage probability, respectively, of the optimal
rule with imperfect CSI for two value of τ . Consider first
τ/σ2 = 0 dB. Here, the system is in the unconstrained
regime for Ω ≤ 3 dB. Therefore, the transmit antenna selected
is independent of g (cf. (7)) and the interference-outage
probability is equal to Ou (τ) even with imperfect CSI; it
increases as Ω increases. The impact of imperfect CSI on the
average SEP is also negligible. The behavior is different in
the constrained regime (Ω > 3 dB). Now, the interference-
outage constraint is violated due to imperfect CSI. With
imperfect g, this happens because the STx transmits with
a higher power more often. Consequently, the average SEP
decreases compared to the perfect CSI case. With imperfect
h, the interference-outage probability again exceeds Omax, but
by a smaller value. However, the average SEP degrades more
and reaches a higher floor. For τ/σ2 = 3 dB, the system
transitions to the constrained regime at Ω = 6 dB. The trends
in the SEP are similar to those above, except that the error
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floors are lower. However, the interference-outage probability
becomes the same as for τ/σ2 = 0 dB for large Ω.

VI. CONCLUSION

We developed a novel SEP-optimal joint ASPA rule for
an interference-outage and peak transmit power constrained
secondary system. We saw that the net cost, which the rule
strove to minimize, and the optimal transmit power of each
antenna were discontinuous functions of both STx-SRx and
STx-PRx channel power gains. We also proposed a simpler
linear rule and saw that it was near-optimal. We derived tight
upper bounds for its average SEP and the interference-outage
probability. The optimal and linear rules reduced the average
SEP by one to two orders of magnitude compared to the
existing ASPA rules. We also saw that the estimation errors
of the STx-SRx and STx-PRx channels affected the average
SEP and interference-outage probability of the optimal rule
differently. An interesting avenue for future work is to consider
multiple PRxs, antenna subset selection, and imperfect CSI at
the STx.

APPENDIX

A. Proof of Lemma 1

We say that an ASPA rule is feasible if it satisfies the
constraints in (4) and (5). By the construction of φ∗ in (10)
and the choice of λ∗, it is clearly a feasible rule. For any
feasible rule φ, which selects antenna s and transmits with
power Ps, define the auxiliary function Lφ(λ) as follows:

Lφ(λ) � Eh,g

[
S(Ps, hs) + λI{Psgs>τ}

]
. (54)

From the definition of φ∗ in (10), it is clear that Lφ∗(λ∗) ≤
Lφ(λ∗). Thus,

Eh,g

[
S(Ps∗ , hs∗) + λ∗I{Ps∗gs∗>τ}

]
≤ Eh,g

[
S(Ps, hs) + λ∗I{Psgs>τ}

]
. (55)

Using E
[
I{a}

]
= Pr (a) and rearranging terms, we get

Eh,g [S(Ps∗ , hs∗)] ≤ Eh,g [S(Ps, hs)]
+λ∗ (Pr (Psgs > τ ) − Pr (Ps∗gs∗ > τ )) . (56)

Since λ∗ > 0 is chosen such that Pr (Ps∗gs∗ > τ ) = Omax,
we get

Eh,g [S(Ps∗ , hs∗)] ≤ Eh,g [S(Ps, hs)]
+ λ∗ (Pr (Psgs > τ) − Omax) . (57)

Since φ is feasible, we must have Pr (Psgs > τ ) −
Omax ≤ 0. Since λ∗ > 0, the above inequality implies
Eh,g [S(Ps∗ , hs∗)] ≤ Eh,g [S(Ps, hs)]. Thus, the ASPA rule
φ∗ in (10) is SEP-optimal.

B. Proof of Lemma 2

We consider the Pmaxgk ≤ τ and Pmaxgk > τ cases
separately.

1) Pmaxgk ≤ τ : For all Pk ∈ [0, Pmax], we have I{Pkgk>τ} =
0. Since S(Pk, hk) is a monotonically decreasing function of
Pk, the minimum net cost is obtained by setting Pk = Pmax.

2) Pmaxgk > τ : We consider Pk ∈ [0, τ/gk] and Pk ∈
(τ/gk, Pmax] cases separately. For Pk ∈ [0, τ/gk], we have
I{Pkgk>τ} = 0. Thus, from (11), NCk = S(Pk, hk). It takes
the smallest value at Pk = τ/gk. On the other hand, for
Pk ∈ (τ/gk, Pmax], we have I{Pkgk>τ} = 1. Thus, NCk =
S (Pmax, hk) + λ. It takes the smallest value at Pk = Pmax.
Thus, the value of Pk that minimizes NCk can be compactly
written as

Pk =

{
Pmax, if S

(
τ
gk

, hk

)
> S (Pmax, hk) + λ,

τ
gk

, else.
(58)

Combining the above two cases yields (12).

C. Brief Proof of Lemma 3

Let Yk � S (τ/gk, hk) − S (Pmax, hk), for 1 ≤ k ≤ Nt. As
hk and gk have continuous CDFs and are independent, it can
be shown that Yk also has a continuous CDF [33, Chap. 3].
Note that an interference-outage happens only when Ys∗ > λ.
This is because, from (12), Ps∗gs∗ is greater than τ only in
this case. Thus, the interference-outage probability Oλ of φ∗

is given by

Oλ = Pr (Ys∗ > λ) . (59)

We now show that Oλ is a monotonically decreasing and
continuous function of λ. Then, by the intermediate value
theorem, it follows that a unique λ∗ ∈ (0, c1) exists such that
Oλ = Omax.

1) Monotonicity of Oλ: For λ = 0, φ∗ reduces to the UC
rule. Hence, Oλ = Ou (τ) > Omax. For 0 < λ < c1, from (59),
we see that Oλ decreases as λ increases. At λ = c1, Oλ = 0
because Ys∗ ≤ c1. Thus, Oλ monotonically decreases from
Ou (τ) to 0 as λ increases from 0 to c1.

2) Continuity of Oλ: In order to explicitly show the depen-
dence on λ, we denote the antenna selected by φ∗ as s∗λ in
the rest of this proof. From (59), we have

Oλ =
Nt∑
i=1

Pr (s∗λ = i, Yi > λ) = NtPr (s∗λ = 1, Y1 > λ) .

(60)

In order to prove that Oλ is a continuous function of λ,
we need to show that |Oλ − Oλ+ε| = O(ε), for an arbitrary,
small ε. From (60), we get |Oλ−Oλ+ε| = Nt|Pr (A)−Pr (B) |,
where A � {s∗λ = 1, Y1 > λ} and B � {s∗λ+ε = 1, Y1 >
λ + ε}. By writing Pr (A) = Pr (A ∩ Bc) + Pr (A ∩ B) and
Pr (B) = Pr (Ac ∩ B) + Pr (A ∩ B), we get

|Oλ − Oλ+ε| = Nt|Pr (A ∩ Bc) − Pr (Ac ∩ B) |,
≤ Nt [Pr (A ∩ Bc) + Pr (Ac ∩ B)] . (61)

Without loss of generality, let ε > 0. From the definitions
of A and B, we get A ∩ Bc = {s∗λ = 1, Y1 > λ} ∩ {(s∗λ+ε 
=
1) ∪ (Y1 ≤ λ + ε)}. Applying the union bound, we get

Pr (A ∩ Bc) ≤ Pr (s∗λ = 1, Y1 > λ, Y1 ≤ λ + ε)
+Pr

(
s∗λ = 1, Y1 > λ, s∗λ+ε 
= 1

)
. (62)

The first term in (62) is less than or equal to
Pr (λ < Y1 ≤ λ + ε). It is O(ε) for ε > 0 because Y1
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is a continuous RV. Similarly, substituting the conditions
from (10) under which s∗λ = 1 and s∗λ+ε 
= 1, we can
show that the second term in (62) is also O(ε). Combining
these two, we get Pr (A ∩ Bc) = O(ε). Similarly, we can
show that Pr (Ac ∩ B) = O(ε). The details are omitted
due to space constraints. Substituting these in (61), we get
|Oλ − Oλ+ε| = O(ε).

D. Proof of Result 1

As the region Îk is obtained by dropping the positive term
S (Pmax, hk), it follows that Ik ⊂ Îk. This is illustrated
in Figure 2b. Thus, when Pmaxgk > τ , the linear rule transmits
with power Pmax more often than the optimal rule. Since the
SEP monotonically decreases as the transmit power increases,
the SEP of the linear rule is lower than that of the optimal
rule.

E. Proof of Lemma 4 About Pr
(
s = 1, Û1|h1

)
Among the (Nt − 1) antennas 2, . . . , Nt, let j, k, and

n be the number of antennas in the OCPP, OCPC, and OI
regions, respectively. There are (Nt − 1)!/(j!k!n!) possible
combinations, which by symmetry are equally likely. Consider
one such event

Fjkn = {Û2, . . . , Ûj+1, Ĉj+2, . . . , Ĉj+k+1, Îj+k+2, . . . , ÎNt},
(63)

in which antennas 2, . . . , j + 1, are in the OCPP region,
antennas j + 2, . . . , j + k + 1 are in the OCPC region, and
antennas j + k + 2, . . . , Nt are in the OI region. Hence,

Pr
(
s = 1, Û1|h1

)
=

∑
j≥0,k≥0,n≥0,
j+k+n=Nt−1

(Nt − 1)!
j!k!n!

Pr
(
s = 1, Û1, Fjkn|h1

)
. (64)

From (18) and (19), we get N̂Ci = S (Pmax, hi), for i ∈
{1, . . . , j+1}, N̂Ci = S (τ/gi, hi), for i ∈ {j +2, . . . , j +k+
1}, and N̂Ci = S (Pmax, hi) + λ, for i ∈ {j + k + 2, . . . , Nt}.
Therefore, antenna 1 is selected when hi < h1, for 2 ≤ i ≤
j + 1, (τhi/gi) < Pmaxh1, for j + 2 ≤ i ≤ j + k + 1, and
S (Pmax, hi)+λ > S (Pmax, h1), for j+k+2 ≤ i ≤ Nt. Hence,

Pr ( s = 1, Û1, Fjkn|h1 )

= Pr

(
Û1, h2 < h1, Û2, . . . , hj+1 < h1, Ûj+1,

τhj+2

gj+2
< Pmaxh1, Ĉj+2,

. . . ,
τhj+k+1

gj+k+1
< Pmaxh1, Ĉj+k+1,

S (Pmax, hj+k+2) + λ > S (Pmax, h1) , Îj+k+2,

. . . , S (Pmax, hNt) + λ > S (Pmax, h1) , ÎNt

)
.

(65)

Using the definitions of the three regions in (16a), (16b),
and (16c), we get

Pr
(
s = 1, Û1, Fjkn|h1

)
= Pr

(
Û1

)
[Tuu(h1)]

j

× [Tuc(h1)]
k [Tui(h1)]

n
, (66)

where the terms Tuu(h1), Tuc(h1), and Tui(h1) are defined in

the lemma statement. From (9) and (16a), we get Pr
(
Û1

)
=

Pr (Pmaxg1 ≤ τ) = 1 − Ou (τ). Substituting (66) in (64) and
simplifying further yields (27).

F. Proof of Lemma 5 About TOCPP

In (24), we first upper bound Pr
(
s = 1, Û1|h1

)
, which is

given in (27), by evaluating or bounding the terms Tuu(h1),
Tuc(h1), and Tui(h1) that it is composed of.

i) Tuu(h1): As h2 and g2 are independent RVs, from (9),
we get Tuu(h1) = Fh (h1) (1 − Ou (τ)).

ii) Tuc(h1): For (τ/(h1Pmax)) > m, we get

Tuc(h1) = Pr

(
g2 >

τ

h1Pmax
h2, Pmaxg2 > τ, g2 ≤ mh2

)
= 0.

For (τ/(h1Pmax)) ≤ m, we have Tuc(h1) ≤ Pr
(
Ĉ2

)
.

iii) Tui(h1): Rearranging terms, we get

Tui(h1) = Pr
(
S (Pmax, h2) > S (Pmax, h1) − λ, Î2

)
. (67)

For h1 > βm, we have S (Pmax, h1)−λ < 0. This implies that
the inequality S (Pmax, h2) ≥ 0 > S (Pmax, h1) − λ is always
true. Hence, Tui(h1) = Pr (Pmaxg2 > τ, g2 > mh2). For h1 ≤
βm, we have

Tui(h1) ≤ Pr (S (Pmax, h2) > S (Pmax, h1) − λ, Pmaxg2 > τ ) ,

= Pr (h2 < ω(h1), Pmaxg2 > τ) , (68)

where ω(h1) is defined in the lemma statement. Here, (68)
follows by substituting the SEP expression in (1) and then
rearranging terms.

From above, for h1 ≤ βm, we get Tuc(h1) + Tui(h1) ≤
Ou (τ)Fh (ω(h1)). Similarly, for h1 > βm, we see
that Tuc(h1) + Tui(h1) ≤ Pr (Pmaxg2 > τ, g2 ≤ mh2) +
Pr (Pmaxg2 > τ, g2 > mh2) = Ou (τ). Substituting these
inequalities along with the expression for Tuu(h1) in (27)

yields an upper bound for Pr
(
s = 1, Û1|h1

)
. Substituting this

in (24) and averaging over h1 yields (28).

G. Proof of Lemma 6 About TOCPC

In (25), we first upper bound Pr
(
s = 1, Ĉ1|h1, g1

)
, which

is given in (29). It is non-zero only when (h1, g1) ∈
{Pmaxg1 > τ, g1 ≤ mh1}. Thus, we need to simplify the terms
Tcu(h1, g1), Tcc(h1, g1), and Tci(h1, g1) only when (h1, g1)
lies in this region.

The first term Tcu(h1, g1) in (30) simplifies to
Fh (τh1/(Pmaxg1)) (1 − Ou (τ)) since h2 and g2 are
independent RVs. Rearranging the terms in the expression for
Tci(h1, g1) in (32) yields

Tci(h1, g1) = Pr
(
S (Pmax, h2) > S (τ/g1, h1) − λ, Î2

)
.

(69)
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From the definition of m in (17), we have S (τ/g1, h1) −
λ ≤ 0 when g1 ≤ mh1. Since S (Pmax, h2) ≥ 0, we get
Tci(h1, g1) = Pr (Pmaxg2 > τ, g2 > mh2). Combining this
with Tcc(h1, g1) in (31), we get Tcc(h1, g1) + Tci(h1, g1) =
Pr ((h2/g2) < (h1/g1) , Pmaxg2 > τ ). Writing this in terms of
the fading distributions and substituting it in (29) yields a
closed-form expression for Pr

(
s = 1, Ĉ1|h1, g1

)
. Substituting

this in (25) and averaging over h1 and g1 yields (33).

H. Proof of Lemma 7 About TOI

We first upper bound Pr
(
s = 1, Î1|h1

)
, which is given

in (34), by evaluating or bounding the terms Pr
(
Î1|h1

)
,

Tiu(h1), Tic(h1), and Tii(h1).
i) Pr

(
Î1|h1

)
: For h1 > βm, Pr (Pmaxg1 > τ, g1 > mh1|h1)

is equal to Pr (g1 > mh1|h1) = F c
g (mh1). Else,

Pr (Pmaxg1 > τ, g1 > mh1|h1) = Pr (Pmaxg1 > τ) = Ou (τ).
ii) Tiu(h1): Since the RVs h2 and g2 are independent,

it follows from (35) that

Tiu(h1) = (1 − Ou (τ))Pr (S (Pmax, h2) > S(Pmax, h1) + λ) .

(70)

For h1 ≤ βm, we can upper bound Tiu(h1) by dropping λ to
get

Tiu(h1) ≤ (1 − Ou (τ))Pr (S (Pmax, h2) > S(Pmax, h1)) ,

= (1 − Ou (τ))Pr (h2 < h1) . (71)

For h1 > βm, we upper bound Tiu(h1) in (70) by dropping
S(Pmax, h1), which yields

Tiu(h1) ≤ (1 − Ou (τ))Pr (S (Pmax, h2) > λ) ,

= (1 − Ou (τ))Fh (βm) . (72)

iii) Tic(h1): Using the definition of m in (17), we see that
the inequality g2 ≤ mh2 is equivalent to S (τ/g2, h2) ≤ λ.
Substituting this in (36), we get Tic(h1) = 0 because
S(Pmax, h1) ≥ 0.

iv) Tii(h1): Here, for h1 ≤ βm, the event {h2 < h1,
Pmaxg2 > τ, g2 > mh2} is the same as {h2 < h1,
Pmaxg2 > τ}. Hence, from (37), we get Tii(h1) =
Pr (h2 < h1, Pmaxg2 > τ) = Ou (τ) Fh (h1). For h1 > βm,
we can write Tii(h1) as

Tii(h1) = Pr (0 < h2 ≤ βm, Pmaxg2 > τ )
+Pr (βm < h2 < h1, g2 > mh2) , (73)

= Ou (τ) Fh (βm) +
∫ h1

βm

F c
g (mx) fh (x) dx, (74)

≤ Ou (τ) Fh (βm) +
∫ ∞

βm

F c
g (mx) fh (x) dx. (75)

Substituting the above expressions in (34) gives an upper
bound for Pr

(
s = 1, Î1|h1

)
. Substituting this bound in (26)

and averaging over h1 yields (38).

I. Brief Proof of Result 2

An interference-outage happens only when an antenna
in the OI region is selected. Thus, Oλ = Pr

(
Îs

)
=

NtPr
(
s = 1, Î1

)
= NtEh1

[
Pr
(
s = 1, Î1|h1

)]
. The simpli-

fied expression for Pr
(
s = 1, Î1|h1

)
is given in (34). The

terms in it are derived in Appendix H.
For h1 ≤ βm, we substitute the upper bound for Tiu(h1)

from (71), Tic(h1) = 0, and Tii(h1) = Ou (τ) Fh (h1) in (34).

This yields Pr
(
s = 1, Î1|h1

)
≤ Ou (τ) [Fh (h1)]

Nt−1
. Simi-

larly, for h1 > βm, we substitute the upper bound for Tiu(h1)
from (72), Tic(h1) = 0, and the exact expression of Tii(h1)
from (74) in (34). This yields

Pr
(
s = 1, Î1|h1

)
≤ F c

g (mh1)

[
Fh (βm)

+
∫ h1

βm

F c
g (mx) fh (x) dx

]Nt−1

.

(76)

Combining these two bounds yields an upper
bound for Pr

(
s = 1, Î1|h1

)
. Substituting this in

NtEh1

[
Pr
(
s = 1, Î1|h1

)]
and averaging over h1 yields (45).
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