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Abstract—An intelligent reflecting surface (IRS) is a cost
and energy-efficient solution to improve wireless system perfor-
mance. Transmit antenna selection (AS) harnesses the benefits
of multiple antennas with a smaller number of radio frequency
(RF) chains. We focus on joint optimization of antenna subset
and transmit beamforming at the transmitter (Tx) and passive
beamforming at the IRS to maximize the receive signal power.
We derive a closed-form optimal AS rule for a Tx and receiver
(Rx) equipped with single RF chain each and ideal IRS. We
analyze its performance with a correlated channel model and
then extend it to non-ideal IRS. We also propose a simpler rule
that significantly reduces the number of computations and pilots.
For an Rx that performs maximal ratio combining, we propose a
manifold optimization algorithm and a low-complexity selection
rule. For a Tx with multiple RF chains, we propose a subset
selection algorithm that yields a locally optimal solution and an
alternating optimization algorithm that reduces complexity. Our
simulations study the impact of estimation errors, discrete phase
shifts, and channel correlation on the proposed selection rules,
which perform better than the existing AS rules. They also show
that the proposed low-complexity rules are near-optimal.

Index Terms—Intelligent reflecting surface, antenna selection,
beamforming, manifold optimization, alternating optimization,
channel correlation, discrete phase shifts.

I. INTRODUCTION

Intelligent reflecting surface (IRS) is being envisioned as a
critical technology for the sixth generation (6G) wireless com-
munication systems to achieve a smart radio environment [2],
[3]. The wireless technologies based on large antenna arrays
and high frequencies would need many expensive radio fre-
quency (RF) chains, consisting of signal converters, filters,
mixers, and amplifiers [4]. Instead, IRS consists of low-cost
passive reflective elements such as printed dipoles [5], [6],
Each of these elements can induce a programmable phase shift
to the incident electromagnetic wave, which enables passive
beamforming to improve the receive signal power. Hence, an
IRS improves the performance of a communication system in
energy and cost efficient manner.
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Similar to IRS, transmit antenna selection (AS) is a tech-
nology that improves energy and cost efficiency by reducing
the number of RF chains at the transmitter. In it, a transmitter
selects a subset of antennas and connects them to the available
RF chains, which are smaller in number than the antenna
elements. AS achieves full diversity with fewer RF chains and
is part of wireless standards such as Long-Term Evolution
and 802.11n [4]. In addition to cost efficiency, AS reduces
circuit design complexity by avoiding signal leakages and
cross-talks that can occur with multiple RF chains on one
integrated circuit [7]. It also reduces the amount of digital
signal processing required to reduce RF impairments such as
IQ imbalance and amplifier distortions [8]. Furthermore, it
is shown that the performance of an IRS-assisted AS system
converges to the performance of a maximal ratio transmission
based system with the number of RF chains equal to the
antennas at the transmitter (Tx) [9]. Motivated by this fact,
we focus on addressing the challenge of pilot transmission
overhead and computational complexity in an IRS-assisted
AS at the Tx, which improves the performance at a low cost.

IRS-assisted systems with single and multiple antennas at
the Tx are studied in the literature.

Single Input Single Output System [5], [6], [10]–[12]: An
IRS is shown to improve the performance of a communication
system with a single antenna transmitter and receiver (Rx)
even when the direct link (Tx → Rx) between them is
blocked [11], [12]. Furthermore, it achieves a diversity order
equal to the number of IRS elements [10]. Symbol error
probability (SEP) performance was studied in [5] and [6],
and the performance of a distributed IRS system was studied
in [12].

Multiple Input Single Output System With Transmit Beam-
forming [13]–[21]: Joint transmit beamforming at the Tx and
the passive beamforming at the IRS with only reflected link
(Tx → IRS → Rx) is studied in [13] and [14] and with
both reflected and direct links in [15]–[20]. An alternating
optimization based algorithm is developed in [15] to minimize
the transmit power and different optimization algorithms were
developed in [16]–[20] to maximize the receive signal power.
Beamforming design for a millimeter-wave communication
system is studied in [14], [16]. A fixed-point iteration method
is proposed in [17] and a semi-definite relaxation (SDR) based
algorithm, which yields an approximate solution, is proposed
in [18]. A branch-and-bound algorithm, which converges to
the global optimal solution, is presented in [20]. Furthermore,
a low-complexity conjugate gradient based manifold optimiza-
tion algorithm, which converges to a local-optimal solution
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with near-optimal performance, is developed in [19].
Multiple Input Multiple Output (MIMO) System [22]–[24]:

In [22], the complex circle manifold structure of the unit
modulus constraint is exploited to jointly optimize the pre-
coding matrices at the Tx and passive beamforming at the
IRS. Two efficient algorithms were proposed to maximize
the weighted sum rate of all users. A low-complexity block
coordinate descent algorithm is proposed in [23] to maximize
the weighted sum rate of an IRS-assisted simultaneous wire-
less information and power transfer system. Joint transmit and
passive baemforming to minimize the SEP of an IRS-assisted
MIMO system is studied in [24].

IRS With Antenna Selection [9]: A joint AS and passive
beamforming algorithm is proposed in [9] for an IRS with
practical reflection coefficients. In it, a single antenna with the
highest channel power gain from the Tx to IRS is selected.
For an IRS with a large number of elements, it is shown to
achieve an optimal rate.

A. Focus and Contributions

We focus on an IRS-assisted communication system with
a multiple antenna Tx communicating to a multiple antenna
Rx by employing AS. We aim to develop a jointly optimal
subset antenna selection, transmit beamforming at the Tx,
and passive beamforming at the IRS to maximize the receive
signal power. Our problem formulation is novel and prac-
tical in the following aspects. Firstly, joint AS and passive
beamforming is different and involved compared to the AS
in a conventional system without IRS, and the optimal AS
rule is not known. Secondly, unlike [18]–[20], we do not
assume any channel state information (CSI) at the IRS, which
is challenging to obtain in practice due to the passive nature
of the IRS. Thirdly, our approach reduces the number of pilot
transmissions required. For the above model, we consider
both single AS, where Tx is equipped with one RF chain,
and subset AS, where Tx is equipped with more than one RF
chain, scenarios.

Single AS: 1) Optimal AS Rule: We first derive an optimal
AS rule that selects the jointly optimal antenna at the Tx and
the optimal reflection coefficient of each IRS element when
the Rx employs Selection combining (SC). It is optimal for
any number of IRS elements. For the first time, we show
that the optimal antenna index and the optimal reflection
coefficient are decoupled. We propose a manifold optimization
local optimal AS algorithm when the Rx employs maxi-
mal ratio combining (MRC). 2) Low-Complexity AS (LAS)
Rule: We propose LAS rules for both SC and MRC. The
selection metric of the LAS rule for SC lower bounds the
selection metric of the optimal AS rule. These rules are robust
to imperfect CSI and reduces the number of computations
and pilots required. 3) Performance Analysis: Considering
the channel correlation, we analyze the performance of the
optimal AS rule for SC. It handles quite involved selection
metric with correlated random variables (RVs). We also derive
closed-form expressions for the average signal to noise ratio
(SNR) normalized by the square of the number of IRS
elements and ergodic rate. These expressions provide valuable

insights and apply to any number of antennas at the Tx and
Rx, any number of IRS elements, and channel correlation.

Subset AS: We first develop an algorithm, which exploits
the complex circle manifold structure, to find an antenna
subset, transmit beamforming at the Tx, and reflection co-
efficients at the IRS to maximize the received signal power. It
converges to a local optimal solution and its complexity grows
exponentially as the number of RF chains increase. We also
propose an alternating optimization based subset AS algorithm
whose search complexity is independent of the number of RF
chains. It inherits the advantages of the above LAS rules.

Numerical Results: Our results study the impact of different
parameters on the performance of an IRS-assisted AS system.
They show that the average SNR is independent of the channel
correlation, whereas the diversity and the outage probability
depend on the correlation. They also study the impact of
discrete phase shifts and the channel estimation errors [21] on
the performance of the developed AS rules. Our performance
benchmarking shows that the developed optimal AS rule
performs better than the AS rules in the literature and the
proposed low-complexity AS rules are near-optimal.

Challenges and Comparison: Our manuscript tackles the
challenges of a large number of non-convex constraints,
computational complexity, and pilot transmission overhead
in an IRS-assisted AS system compared to a conventional
AS system. Furthermore, our analysis involves order statistics
of dependent RVs, for which standard techniques employed
in conventional systems without IRS are not sufficient. The
single AS and subset AS algorithms developed for multiple
antenna Rx differ from the single AS rule for single antenna
users studied in [9]. Our AS rules only need cascaded channel
gains, unlike the Tx to IRS link needed by the AS rule in [9],
which is difficult to obtain for a passive IRS. Furthermore,
our AS rules can compute the IRS phase shifts in parallel
compared to the sequential algorithm, whose computational
time increases as the number of IRS elements increase. We
also note that the assumption of large number of IRS elements
is used only for the asymptotic analysis.

Outline: Section II presents our system model and problem
statement. The optimal single AS and LAS rules are developed
in Section III. Performance analysis is done in Section IV.
Section V proposes subset AS rules. Numerical results are pre-
sented in Section VI. Our conclusions follow in Section VII.

Notations: Scalars are denoted by lower-case letters. Vec-
tors and matrices are denoted by boldface lower-case and
upper-case letters, respectively. Let j =

√
−1. For a complex

number a, |a|, arg(a), and a∗ denote its absolute value, phase,
and conjugate, respectively. The set of all complex-valued
matrices of size m × n is denoted by Cm×n. For a vector
vector x, ∥x∥, xT, x†, and [x]n denote its 2-norm, transpose,
conjugate transpose, and nth element, respectively. We denote
the probability of an event A and the conditional probability of
A given B by Pr (A) and Pr (A|B), respectively. E [·] denotes
expectation operator. For a RV X , FX (·) and fX(·) denote
its cumulative distribution function (CDF) and probability
density function (PDF), respectively. Further, X ∼ CN (0, σ2)
means that X is a circular symmetric zero-mean complex
Gaussian RV with variance σ2.
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II. SYSTEM MODEL AND PROBLEM STATEMENT

Our system model shown in Figure 1, consists of a Tx,
an IRS, and an Rx. Tx has Nt antennas and NRF < Nt

number of RF chains. It communicates to the Rx equipped
with Nr antennas. IRS is equipped with N passive elements
separated by dv m and a controller that configures the re-
flection coefficients of the IRS elements to perform passive
beamforming. The Tx dynamically selects NRF antennas
from the set of antennas {1, 2, . . . , Nt}, connects them to
the RF chains available, and performs transmit beamforming.
It also computes the IRS reflection coefficients and sends
them to the controller through a dedicated control link. The
Rx either employs SC, which requires only one RF chain,
or MRC, which requires Nr RF chains [25]. We assume a
quasi-static flat-fading channel model [18], [19] and consider
a time-division duplexing (TDD) mode of operation to exploit
reciprocity.

Let fm = [fm1, . . . , fmN ]
T ∈ CN×1, for m ∈

{1, 2, . . . , Nr} denote the complex baseband channel gain
vector from the IRS to the mth antenna of the Rx. Complex
channel gain matrices from the Tx to Rx and Tx to IRS are
denoted by H = [hmk] ∈ CNr×Nt and G = [gnk] ∈ CN×Nt ,
respectively. The channel gains from kth antenna of the Tx to
different IRS elements are correlated due to the rectangular
geometry and size of the IRS element [26]. Similarly, channel
gains from the IRS to the Rx are correlated. However, we
assume that the direct link channel gains from Tx to Rx,
channel gains from the Tx to IRS and IRS to Rx correspond-
ing to different antennas at the Tx and Rx are independent.
This is possible when the Tx and Rx antennas are sufficiently
spaced [27], [28].

Let r ∈ {1, 2, . . . , Nr} denote the antenna selected at
the Rx when it employs SC. Set S, which is a subset of
{1, 2, . . . , Nt}, contains the indices of the selected NRF

antennas. Let S denote the set of all such possible subsets con-
taining

(
Nt

NRF

)
elements. Let hmS ∈ CNRF×1 denote the chan-

nel gain vector from the Tx to mth Rx antenna corresponding
to the subset S and GS ∈ CN×NRF denote the sub-matrix that
contains columns of G corresponding to the antenna indices
in S. Let xn = βne

jθn denote the reflection coefficient of the
nth IRS element, where βn ∈ [0, 1] and θn ∈ [0, 2π] denote
its amplitude and phase coefficients. Let x = [x1, . . . , xN ]T

be the passive beamforming vector at the IRS. The Tx selects
a subset of antennas in S, employs a transmit beamforming
vector w = [wk] ∈ CNRF×1, and transmits a data symbol d
(E
[
|d|2
]
= 1). Then the mth Rx antenna receives hT

mSwd in

the direct link and
∑N

n=1 fmnxn [GSw]n d, where [GSw]n
denotes the nth element of the vector GSw, in the reflected
link. The combined signal ym is given by

ym = (hT
mS + xTFmGS)wd+ z, (1)

where Fm = diag (fm) and z ∼ CN
(
0, σ2

n

)
denote the

additive white Gaussian noise.

A. CSI Acquisition Procedure and Assumptions [29], [30]:
The Rx sends pilot symbols and the Tx estimates the CSI

in two phases. In the first phase, all the IRS elements are

2

1

RF chain

1
RF chain

Transmitter (Tx)

IRS

Controller

Receiver (Rx)

SC/

MRC

1

Fig. 1. System model consists of a Tx equipped with Nt antennas and NRF

RF chains communicating to a multiple antenna Rx with the help of an N
element IRS.

set to absorption mode, i.e., βn = 0, and Tx estimates direct
link channel gains. In the second phase, the IRS elements are
configured to reflect mode, i.e., βn ̸= 0, and the Tx estimates
the sum of the direct link and reflected link channel gains [29],
[30]. Then, the Tx subtracts the direct link channel gain to get
the cascaded reflected link channel gain. Individual channel
gains of the Tx to IRS and the IRS to Rx links, which are
challenging to obtain due to the passive nature of the IRS,
are not needed at the Tx. Furthermore, no CSI is assumed at
the IRS. The Tx sends the index of the Rx antenna selected
and a pilot in the downlink transmission. The Rx exploits
this to estimate the effective channel gain corresponding
to the antennas selected and passive beamforming vector x
programmed at the IRS.

B. Problem Statement

We now state our problem formally. Let ϕ denote the set
of variables to be jointly optimized. When Rx employs SC
ϕ = {S,w,x, r} and for MRC ϕ = {S,w,x}. From (1), the
instantaneous SNR γ at the Rx, when it employs SC is given
by

γ = SNR (ϕ) =
∣∣(hT

rS + xTFrGS)w
∣∣2/σ2

n. (2)

and similarly, for MRC, it is given by

γ = SNR (ϕ) =

Nr∑
m=1

∣∣(hT
mS + xTFmGS)w

∣∣2/σ2
n. (3)

Let R (ϕ) = log2 (1 + SNR (ϕ)) denote the instantaneous rate.
Similarly, the instantaneous SEP SEP (ϕ) is given by [31, eq.
(14)]

SEP (ϕ) ≈ c1 exp (−c2SNR (ϕ)) . (4)

Our objective is to maximize received signal power at the
receiver, which maximizes instantaneous rate and minimizes
instantaneous SEP, subject to the following two constraints:

1) Peak transmit power constraint limits the instantaneous
transmit power to be below a maximum transmit power
Pmax allowed, i.e., ∥w∥2 ≤ Pmax [18].

2) Unit modulus constraint limits the modulus of each IRS
reflection coefficient to be one i.e., |xn| = 1, for n ∈
{1, 2, . . . , N} [14], [15], [19], [20].
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Problem: Our optimization is over ϕ = {S,w,x, r}, for
SC and ϕ = {S,w,x}, for MRC, which can be written as

P : max
ϕ

SNR (ϕ) , (5)

s.t. ∥w∥2 ≤ Pmax, (6)
|xn| = 1, ∀ n = 1, . . . , N. (7)

The above optimization problem P is non-convex as the
objective function is non-concave and the unit-modulus con-
straint is non-convex. To the best of our knowledge, there is
no simple tractable solution to this problem.

III. SINGLE ANTENNA SELECTION WITH IRS (NRF = 1)

In this section, for SC, we first derive an optimal solution
of P for ideal reflection coefficients and then adapt it to non-
ideal coefficients. We also propose a LAS rule and a two
pilot power scheme to reduce the complexity and pilot power
consumption. Then for MRC, we develop an optimal selection
algorithm and a LAS rule.

A. Selection Combining

Let s ∈ {1, 2, . . . , Nt} and r ∈ {1, 2, . . . , Nr} denote
the indices of the antennas selected at the Tx and Rx,
respectively, and ws denote the corresponding element in the
beamforming vector w. Here, the received signal in (1) and
the instantaneous SNR in (2) reduces to

yr =

(
hrs +

N∑
n=1

frngnsxn

)
wsd+ z, (8)

and

γ = SNR (s, ws,x, r) =

∣∣∣∣∣hrs +

N∑
n=1

frngnsxn

∣∣∣∣∣
2

|ws|2

σ2
n

, (9)

respectively.
1) Optimal AS Rule for Ideal IRS Coefficients: We first

present the optimal AS rule for ideal reflection coefficients.
Result 1: For an IRS-assisted single AS, the optimal Tx

antenna sopt, optimal transmit power w2
sopt

, optimal Rx antenna
ropt, and optimal reflection coefficient xn,opt are given by
w2

sopt
= Pmax,

(ropt, sopt) = argmax
m∈{1,2,...,Nr},
k∈{1,2,...,Nt}

{
|hmk|+

N∑
n=1

|fmngnk|

}
, (10)

xn,opt = exp
(
j
[
arg
(
hroptsopt

)
− arg

(
froptngnsopt

)])
,
(11)

for n ∈ {1, 2, . . . , N}.
Proof: The proof is given in Appendix A.

Insights: From (10), we see that the optimal antenna pair is
the one that maximizes the selection metric, which is the sum
of the absolute values of the direct link and the N cascaded
reflected link channel gains. The optimal phase of each IRS
element is the difference between the direct link phase and
the reflected link phase. We see that the optimal antenna
indices depend only on the absolute values of the channel
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Fig. 2. Performance comparison: Ergodic rate as a function of the number
of IRS elements with non-ideal gain (Pmax = 10 dBm, Nt = 16, Nr = 1,
NRF = 1, dv = λ/2 dti = 40 m, dtr = 20 m).

gains and the optimal reflection coefficients depend only on
their phases. They are also decoupled, allowing us to directly
find the optimal antenna indices.

Number of Pilot Transmissions Required and Computa-
tional Complexity: Here, the Tx and Rx have only one RF
chain each, which they switch to each antenna, to estimate the
channel gains at the Tx. Hence, the Rx needs to transmit NtNr

pilots in the first phase to estimate direct link channel gains
and NtNrN pilots in the second phase to estimate reflected
link channel gains. In total, we need NtNr +NtNrN pilots.
Furthermore, we need O(NtNrN) computations to select
optimal antennas and compute optimal reflection coefficients.

2) AS Rule for Non-Ideal IRS Coefficients: In this section,
we consider non-ideal IRS Coefficients, where θn can only
take discrete values and the amplitude coefficient βn depends
on the phase configured. Let b denote the number of bits used
to denote the 2b discrete values that θn can take. The phase
dependent amplitude coefficient βn(θn) is as follows [9, (6)]

βn(θn) = 0.2+0.8

(
1− sin(θn − 0.43π)

2

)1.6

, θn ∈ [0, 2π].

(12)
We now adapt the optimal AS rule in Result 1 to the above
non-ideal IRS coefficients. Here, antennas are selected as
per (10) and discrete value of θn is obtained by quantization,
i.e.,

θn = quant
(
arg
(
hroptsopt

)
− arg

(
hr,ngnsopt

))
, (13)

where quant (·) denotes uniform quantization operation.
We now compare the performance of this proposed practical

AS rule with the AS rule in [9] that is designed for non-ideal
IRS coefficients. We shall refer to it as maximum IRS (MI)
rule as it selects the antenna smi with maximum channel power
from the Tx to IRS, i.e., smi = argmaxk∈{1,2,...,Nt}{∥gk∥},
where gk ∈ CN×1 is the kth column of the Tx to IRS channel
matrix G. Discrete phase of each IRS element is obtained
sequentially using Algorithm 1 in [9].

Figure 2 plots the ergodic rate as a function of the number
of IRS elements for the MI rule and proposed AS rule
with non-ideal IRS coefficients. Comparison is made for two
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scenarios; i) with a direct link and ii) without direct link.1

Figures 2a and 2b does this for b = 1 and b = 3, respectively.
i) b = 1: Without direct link, the performance of the proposed
rule matches with the MI rule. However, with direct link, the
proposed rule performs better than the MI rule for all values
of N . ii) b = 3: Without direct link, the proposed rule is
close to the MI rule for small N , and the MI rule performs
slightly better for large N . With a direct link, the proposed
rule performs significantly better than the MI rule for small N
and matches with the MI rule for large N . Furthermore, the
performance with b = 3 matches with the continuous phase.

Benefits of the Proposed Rule: From the above, we see that
the proposed practical AS rule performs well even with non-
ideal IRS coefficients. Moreover, it can compute the discrete
phase shits in parallel compared to sequential computation
in the MI rule, which increases the computation time as N
increases. Given these benefits, in subsequent sections, we
assume ideal IRS coefficients and focus on developing AS
rules that require lower number of pilot transmissions.

3) LAS Rule: We now propose a simpler LAS rule and
a two pilot power CSI acquisition procedure. For Rx an-
tenna m and Tx antenna k, it computes the selection metric
|hmk|+

∣∣∣∑N
n=1 fmngnk

∣∣∣ and selects the antenna combination
(r, s) that maximizes it. Once the antennas are selected,
the corresponding reflection coefficient xn is computed by
substituting the phases of the direct link hrs and reflected
link channel gain frngns as in (11). Therefore, the LAS rule
is given by

(r, s) = argmax
m∈{1,2,...,Nr},
k∈{1,2,...,Nt}

{
|hmk|+

∣∣∣∣∣
N∑

n=1

fmngnk

∣∣∣∣∣
}
, (14)

xn = exp (j [arg (hrs)− arg (frngns)]), ∀ n, (15)

and w2
s = Pmax. By the triangle inequality, we know that∣∣∣∣∣

N∑
n=1

fmngnk

∣∣∣∣∣ ≤
N∑

n=1

|fmngnk| . (16)

Therefore, the selection metric of the LAS rule lower bounds
the selection metric of the optimal AS rule in (10).

We now propose a two pilot power CSI acquisition scheme
for the LAS rule. i) Low Pilot Power Phase: First, with
IRS in absorption mode, the Rx transmits NtNr pilots with
pilot power P1 to obtain the estimates of |h11| , . . . , |hNrNt |.
Following that the IRS is set to reflective mode with xn =
1, ∀ n. Then Rx sends another NtNr pilots to obtain the
estimates of absolutes of sum of cascaded channel gains, i.e.,∣∣∣∑N

n=1 f1ngn1

∣∣∣ , . . . , ∣∣∣∑N
n=1 fNrngnNt

∣∣∣. Now the Tx selects
the antenna combination (r, s) as per (14) using this CSI
obtained with low pilot power. Then, it connects the RF chain
to the antenna index s and communicates the antenna index
r to Rx. ii) High Pilot Power Phase: Then, the Rx sends
N + 1 pilots with power P2 ≥ P1 to obtain estimates of
arg(hrs), arg(fr1g1s), . . . , arg(frNgNs) required to compute

1The MI rule is originally developed for the case when there is no direct
link. For a fair comparison, we updated its phase selection algorithm to align
the received signal in the direction of the direct link.

xn in (15). Therefore, the LAS rule needs only 2NtNr +
N + 1 pilots compared to NtNr + NtNrN pilots required
by the optimal AS rule. and its computational complexity is
O(NtNr + N). Thus, the LAS rule combined with the two
pilot power scheme reduces the pilot power consumption and
number of pilots and the computations required significantly.

The motivation behind using lower power to obtain ampli-
tudes of channel gains and higher power to obtain their phases
is from the fact that the phase information is crucial to ensure
coherent reception. In Section VI, we see that this procedure
saves pilot power with only a minor performance degradation.

B. MRC
Here, the Rx is equipped with Nr RF chains. For antenna

s selected at the Tx, the instantaneous SNR in (3) reduces to

γ = SNR (s, Pmax,x) =
Pmax

σ2
n

Nr∑
m=1

∣∣∣∣∣hms +

N∑
n=1

fmngnsxn

∣∣∣∣∣
2

.

(17)
Let xk = [xnk] ∈ CN×1 denote the passive beamforming
vector configured when Tx antenna k is used for transmission.
For any Tx antenna k, xk that maximizes the signal power
can be obtained by solving:

Pk : max
xk

Nr∑
m=1

∣∣∣∣∣hmk +

N∑
n=1

fmngnkxnk

∣∣∣∣∣
2

, (18)

s.t. |xnk| = 1, n = 1, . . . , N. (19)

The objective function in Pk is quadratic in xk and is convex.
However, the unit modulus constraint is non-convex and
standard convex optimization techniques cannot be employed.

We now first define manifold and then present an optimiza-
tion technique that can be used to solve Pk. A manifold is
a topological space that looks like a Euclidean space in the
vicinity of each point.2 The constraint |xnk| = 1 forms a
circle in a complex plane. Hence, the unit modulus constraint
in (19) is a product of N complex circles, which forms a
complex circle manifold. It is a Riemannian submanifold of
CN×1 [19], [22], for which we can find a vector that gives
direction in which the objective function increases similar
to a gradient in the Euclidean space. This is referred to as
Riemannian gradient. For a complex circle manifold, this is
given by the orthogonal projection of the Euclidean gradient
onto the tangent space at that point. Geometric interpretation
of these gradients is shown in [22, Fig. 2]. Using this
Riemannian gradient, the optimization techniques developed
for the Euclidean space can be modified to solve Pk [32].
These techniques converge to the local optimal solution [22].

1) The Optimal AS Rule for MRC: The optimal selection
algorithm when Rx employs MRC is as follows:

Step 1: For each k ∈ {1, 2, . . . , Nt}, solve Pk using
conjugate gradient based manifold optimization technique to
obtain xopt

k .
Step 2: Then select the Tx antenna that maximizes the SNR,

i.e.,
sopt = argmax

k∈{1,2,...,Nt}

{
SNR

(
k, Pmax,x

opt
k

)}
, (20)

2A more formal definition can be found in [32].
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and configure xopt
sopt as IRS reflection coefficients.

Here, we see that the optimal antenna indices and the
reflection coefficient are no longer decoupled. Similar to
optimal AS rule in Result 1, we need NtNr +NtNrN pilots
For each antenna k, the above algorithm uses the conjugate
gradient based manifold optimization technique to solve Pk,
whose worst-case complexity is O(N1.5) [19]. Therefore,
the computational complexity of the above algorithm is
O(NtN

1.5).
2) LAS Rule for MRC: The objective function of Pk

in (18) is sum of the absolute squares of the effective channel
gains. To reduce the computational complexity involved in
maximizing it, we consider an objective function, which is
sum of absolutes, i.e.,

∑Nr

m=1

∣∣∣hmk +
∑N

n=1 fmngnkxnk

∣∣∣.
By triangle inequality, it is lower bounded by∣∣∣∑Nr

m=1 hmk +
∑N

n=1 xnk

∑Nr

m=1 fmngnk

∣∣∣.
Let ak =

∑Nr

m=1 hmk and bnk =
∑Nr

m=1 fmngnk.
Therefore, the lower bound reduces to

∣∣∣ak +
∑N

n=1 xnkbnk

∣∣∣.
The reflection coefficient that maximizes this lower bound
can be computed similar to (15). It is given by xnk =
exp (j [arg (ak)− arg (bnk)]), ∀n. Substituting this in the
lower bound, it reduces to |ak| +

∑N
n=1 |bnk|. Using these,

we propose the following LAS rule for MRC:

s = argmax
k∈{1,2,...,Nt}

{
|ak|+

N∑
n=1

|bnk|

}
, (21)

xns = exp (j [arg (as)− arg (bns)]), n = 1, . . . , N. (22)

Here, the antenna index and the reflection coefficient are
decoupled different from the optimal rule. The above LAS rule
needs only channel gains summed over Nr receive antennas.
Therefore, we only need Nt + NtN pilots compared to the
NtNr+NtNrN pilots required by the manifold based optimal
rule. Furthermore, computational complexity is O(NtN). In
the lines similar to the development of the LAS rule in
Section III-A3 the selection metric in (21) can be modified
to |ak| +

∣∣∣∑N
n=1 bnk

∣∣∣. This will further reduce the pilot
transmissions to 2Nt +N . We can also utilize the two pilot
power scheme described in Section III-A3 to further reduce
the pilot power.

IV. PERFORMANCE ANALYSIS OF THE OPTIMAL AS RULE

In this section, we analyze the performance of the optimal
single AS rule in Result 1. With correlated channel model, we
first derive expressions for the average SNR, outage probabil-
ity, ergodic rate, and average SEP, which needs to be evaluated
numerically. We then derive a closed-form expressions for the
normalized average SNR and approximate ergodic rate.

We consider the channel gains from the Tx to IRS and the
IRS to Rx to undergo correlated Rician fading. This models
the scenarios where IRS is located such that there is a line
of sight (LOS) path from itself to the Tx and the Rx. Let
Kg , GLOS, and GNLOS denote the Rician factor, LOS, and
non-LOS (NLOS) components, respectively, of the Tx to IRS
link and Kr, fLOS

m , and fNLOS
m denote the Rician factor, LOS,

and NLOS components, respectively, of the IRS to Rx link.

Let µg and µr denote the average channel power gains of
the Tx to IRS link and the Tx to Rx link, respectively. Let
C denote the spatial correlation matrix of IRS channel gains.
With isotropic scattering the spatial correlation between IRS
elements n and m with spacing dnm is shown to be

[C]n,m = sinc
(
2dnm
λ

)
, for n,m = {1, 2, . . . , N}, (23)

where sinc(x) = sin(πx)/(πx) [26]. Thus the channel gain
matrix G and the channel gain vector fm from the IRS to the
mth antenna of the Rx are given by

G =

√
Kgµg

Kg + 1
GLOS +

√
µgC

Kg + 1
GNLOS, (24)

fm =

√
Krµr

Kr + 1
fLOS
m +

√
µrC

Kr + 1
fNLOS
m , (25)

for m ∈ {1, 2, . . . , Nr}. Each element of the GNLOS matrix
and fNLOS

m vector are distributed as i.i.d. CN (0, 1). We con-
sider independent Rayleigh fading for the direct link channel
gain. Thus, hmk ∼ CN (0, µd), where µd denotes the average
channel power gain of the direct link.

A. Exact Analysis

Let xopt = [x1,opt, . . . , xN,opt]. Substituting optimal antenna
indices (sopt, ropt), optimal reflection coefficient xn,opt, and
optimal power from Result 1 in (9), we get

γ =
Pmax

σ2
n

 max
m∈{1,2,...,Nr},
k∈{1,2,...,Nt}

{Zmk}


2

, (26)

where

Zmk ≜ |hmk|+
N∑

n=1

|fmngnk| . (27)

Let Z ≜ maxm∈{1,2,...,Nr},k∈{1,2,...,Nt} {Zmk}. From above,
we see that the performance of the optimal rule depends on
the statistics of the RV Z. Its CDF can be written as

FZ(z) =Pr
(

max
m∈{1,2,...,Nr},k∈{1,2,...,Nt}

{Zmk} ≤ z

)
, (28)

=Pr (Z11 ≤ z, . . . , ZNrNt ≤ z) . (29)

We note that the RVs Z11, Z21, . . . , ZNr1 are depen-
dent as they are functions of g11, . . . , gN1. Similarly,
Z11, Z12, . . . , Z1Nt

are dependent. Therefore, FZ(z) involves
order statistics of dependent RVs, which is in general hard to
simplify.

We now provide two ways to evaluate FZ(z), first for
general Nr and then for Nr = 1.

i) General Nr: Firstly, we condition on f1, . . . , fNr
,G and

then average over them to get

FZ(z) = E

[
Pr

(
|h11|+

N∑
n=1

|f1ngn1| ≤ z, . . .

. . . , |hNrNt
|+

N∑
n=1

|fNrngnNt
| ≤ z

f1, . . . , fNr
,G

)]
.

(30)
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Given f1, . . . , fNr
, and G, the events{

|hmk|+
∑N

n=1 |fmn| |gnk| ≤ z
}

, for m ∈
{1, 2, . . . , Nr}, k ∈ {1, 2, . . . , Nt} are mutually independent
as h11, . . . , hNrNt

are independent RVs. Therefore, we get

FZ(z) = E

[
Nr∏
m=1

Nt∏
k=1

Pr
(
Zmk ≤ z

fm, g1k, . . . , gNk

)]
,

(31)
Since, |hmk| is a Rayleigh RV, FZ(z) can be simplified as

FZ(z) = E

[
Nr∏
m=1

Nt∏
k=1

(
1− e

− (z−
∑N

n=1|fmngnk|)
2

µd

)]
, (32)

if z >
∑N

n=1 |f1ngn1| , . . . , z >
∑N

n=1 |fNrngnNt
|, otherwise

FZ(z) = 0. The expectation in (32) can be evaluated using
Monte Carlo techniques.

ii) Special Case Nr = 1: We now present a simpler way
to compute FZ(z) for Nr = 1. Here,

FZ(z) =Pr
(

max
k∈{1,2,...,Nt}

{Z1k} ≤ z

)
, (33)

=Pr (Z11 ≤ z, . . . , Z1Nt ≤ z) , (34)

=Pr

(
|h11|+

N∑
n=1

|f1ngn1| ≤ z, . . .

. . . , |h1Nt
|+

N∑
n=1

|f1ngnNt
| ≤ z

)
. (35)

Conditioning on f1 and averaging over it, we get

FZ(z) =E

[
Pr

(
|h11|+

N∑
n=1

|f1ngn1| ≤ z, . . . ,

. . . , |h1Nt
|+

N∑
n=1

|f1ngnNt
| ≤ z

f1)] . (36)

Given f1, the events
{
|h1k|+

∑N
n=1 |f1ngnk| ≤ z

}
, for k ∈

{1, 2, . . . , Nt}, are mutually independent. Furthermore, as the
RVs are identically distributed, we get

FZ(z) =E

Pr

(
|h11|+

N∑
n=1

|f1ngn1| ≤ z
f1)Nt

 , (37)

=E
[

Pr
(
Z11 ≤ z

f1)Nt
]
. (38)

It is difficult to obtain the CDF of Z11 given f1 as
the RVs g11, . . . , gN1 are correlated. Therefore, we use
the moment matching method to match its distribution
to a Gamma distribution with shape and scale param-
eters α (f1) = (E [Z11|f1])2/Var [Z11|f1] and β (f1) =

E [Z11|f1]/Var [Z11|f1]. Therefore, Pr
(
Z11 ≤ z

f1) =

γ (α (f1) , β (f1) z)/Γ(α (f1)), where γ(·, ·) is the lower in-
complete gamma function and Γ(·) is gamma function [33].
Thus,

FZ(z) = E
[
γ (α (f1) , β (f1) z)

Γ(α (f1))

]
. (39)

We now express different performance metrics as a function
of FZ(z).

1) Average SNR
(
SNR

)
: Averaging (26), we get SNR =

PmaxE
[
Z2
]
/σ2

n. Expressing the second moment of the
non-negative RV Z, i.e., E

[
Z2
]
=
∫∞
0

z2fZ(z)dz, in
terms of its CDF, we get

SNR =
Pmax

σ2
n

∫ ∞

0

(
1− FZ

(√
z
))

dz. (40)

2) Outage Probability: Let Pout denote the probability that
the instantaneous SNR γ in (26) is below a threshold γt,
i.e., Pr (γ < γt). It is given by

Pout = Pr
((
PmaxZ

2/σ2
n

)
≤ γt

)
= FZ

(√
γtσ2

n/Pmax

)
.

(41)
3) Ergodic Rate: The ergodic rate, which we denote by ER,

in terms of the CDF of instantaneous SNR γ can be
written as ER = log2 e

∫∞
0

(1− Fγ(x)) / (1 + x) dx [27,
(26)]. Expressing it in terms of the CDF of RV Z, we
get exact expression for the ergodic rate as follows

ER = log2 e

∫ ∞

0

(
1− FZ

(√
xσ2

n/Pmax

)) 1

1 + x
dx.

(42)
4) Average SEP

(
SEP

)
: Substituting the instantaneous SNR

of the optimal AS rule from (26) in the instantaneous
SEP expression for M-ary phase shift keying (PSK) [34],
we get

SEP(γ) =
1

π

∫ (1− 1
M )π

0

exp

(
−
Pmax sin

2
(

π
M

)
σ2
n sin

2(θ)
Z2

)
dθ.

(43)
Averaging it over Z, yields

SEP =
1

π

∫ (1− 1
M )π

0

∫ ∞

0

Pmax sin
2
(

π
M

)
σ2
n sin

2(θ)
e
−

Pmax sin2( π
M )

σ2
n sin2(θ)

z

× FZ

(√
z
)
dz dθ. (44)

5) Approximate SEP: Substituting (26) in the
approximate SEP expression in (4), yields
SEP(γ) ≈ c1 exp

(
−c2PmaxZ

2/σ2
n

)
, where c1 and

c2 are modulation-dependent constants. It is a good
approximation for Quadrature PSK, 8-PSK, and 16-
QAM with (c1, c2) = (0.5, 0.6), (c1, c2) = (0.6, 0.18),
and (c1, c2) = (0.8, 0.12), respectively [25].
Furthermore, it is exact for differential Binary PSK with
(c1, c2) = (0.5, 1) and non-coherent binary frequency-
shift-keying with (c1, c2) = (0.5, 0.5) [27]. Averaging
this approximate SEP, we get

SEP ≈ c1c2Pmax

σ2
n

∫ ∞

0

e
− c2Pmax

σ2
n

z
FZ

(√
z
)
dz, (45)

≈ c1

n∑
i=1

wiFZ

√ xiσ2
n

c2Pmax

 , (46)

where xi and wi are the n abscissas and weights, respec-
tively, for Gauss-Laguerre integration [35, pp. 923]. The
above approximation applies to many constellations.

B. Asymptotic Analysis

We now derive closed-form expressions for large N .
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1) Normalized Average SNR: Let Ymk =
∑N

n=1 |fmngnk|
and µy = E [Ymk]. Therefore,

µy = lr

N∑
n=1

√
µr,nµg,n, (47)

where µr,m = µr

∑N
m=1

∣∣∣[C1/2
]
n,m

∣∣∣2, µg,m =

µg

∑N
m=1

∣∣∣[C1/2
]
n,m

∣∣∣2 , lr =
πL1/2(−Kr)L1/2(−Kg)

4
√

(Kr+1)(Kg+1)
,

and L1/2 (·) is the Laguerre polynomial of degree 1/2 [33].
We know that fmn and gnk are independent with finite
mean and bounded variance. Furthermore, from (23), we see
that covariances of hr,m and hr,n and gmk and gnk tend
to zero for |m− n| → ∞. Under these conditions, with
spatial correlation given in (23), for large N , it can be shown
that [26, (21)]

1

N

N∑
n=1

|fmngnk| → lr
√
µrµg. (48)

Using (48), we derive the below result.
Result 2: With spatial correlation of IRS channels, the

normalized average SNR of the AS rule in Result 1, i.e.,

SNR
N2

→Pmaxµd

σ2
nN

2

NtNr∑
k=1

1

k
+

Pmax

σ2
n

µgµrl
2
r

+
Pmaxlr

√
µdµgµrπ

σ2
nN

NtNr∑
k=1

(
NtNr

k

)
(−1)k+1

√
k

.

(49)

Proof: The proof is given in Appendix B.
Insights: The expression in (49) applies to any value of

Nt, Nr and for a sufficiently large N . Among the three
terms, the first term is the average SNR due to the direct
link. It increases linearly as the direct link average channel
power gain µd increases and logarithmically as the product
NtNr increases. The second term corresponds to the average
SNR obtained through reflected link. It is proportional to the
product µgµr and is independent of Nt and Nr. The third
term is the average SNR due to the coherent combination of
the signal from the direct and the reflected links. It depends
on NtNr and the statistics of the direct and the reflected links.
By multiplying (49) with N2, we see that the first term, which
is the average SNR due to the direct link, is independent of
N . The second term, which is the average SNR due to the
reflected link, grows as N2 and the third term, which is the
average SNR due to the combination of the direct link and
the reflected link, grows linearly with N .

For large N , the normalized average SNR saturates to a
constant independent of N as follows

lim
N→∞

SNR
N2

→ Pmax

σ2
n

µrµg (lr)
2
. (50)

In Section VI, we will see that the value of N for which
the normalized average SNR reaches this constant depends
on distances between the Tx, IRS, and Rx.

2) Approximate Ergodic Rate: Using Jensen’s inequality,
we get the following upper bound ER = E [log2 (1 + γ)] ≤
log2 (1 + E [γ]) = log2

(
1 + SNR

)
, Multiplying (49) with N2

and substituting it in the above bound yields the following
closed-form approximation

ER ≈ log2

(
1 +

Pmax

σ2
n

[
NtNr∑
k=1

µd

k
+N2µgµrl

2
r

+Nlr
√
µdµgµrπ

NtNr∑
k=1

(
NtNr

k

)
(−1)k+1

√
k

])
.

(51)

From (51), we see that in the low SNR regime, the ergodic
rate grows as O(N2) and in the high SNR regime, it grows
as O(log2(N)). In Section VI, we shall see that it is tight.

3) Strong LOS: Under strong LOS conditions, i.e., Kg →
∞ and Kr → ∞, we know that

∑N
n=1 |fmngnk| /N =√

µrµg . Therefore, for strong LOS conditions, the above
expressions will yield exact values by substituting lr = 1.

V. SUBSET ANTENNA SELECTION

We now develop algorithms for subset AS (NRF > 1) when
Rx employs SC. Here, we first present a manifold optimization
based subset selection (MOBSS) algorithm to solve P . Then,
we propose a simpler alternating optimization based subset
selection (AOBSS) algorithm.

For a given Tx subset S, Rx antenna r, and passive
beamforming vector x, optimal transmit beamforming vector
wopt at the Tx is given by [18]

wopt =
√

Pmax
h∗
rS +G†

SF
†
rx

∗∥∥∥h∗
rS +G†

SF
†
rx∗
∥∥∥ . (52)

Substituting this in (2), we get SNR (S,w,x, r) =

Pmax

∥∥xTFrGS + hT
rS

∥∥2 /σ2
n. Thus, for a given S and r, we

can find x that maximizes the signal power by solving:

PrS : max
x

∥∥xTFrGS + hT
rS

∥∥2 , (53)

s.t. |xn| = 1, n = 1, . . . , N. (54)

Similar to Pk in Section III-B, the objective function in PrS is
quadratic in x and is convex and the unit modulus constraint
forms a complex circle manifold. Therefore, we propose a
manifold optimization based subset AS algorithm below.

1) MOBSS Algorithm: Here, for each S ∈ S and r ∈
{1, 2, . . . , Nr}, we solve PrS using a conjugate gradient based
manifold optimization technique [19]. We obtain a passive
beamforming vector xS that maximizes the signal power
for S. This is repeated for all sets in S. Then, the optimal
subset Sopt is the one that yields maximum signal power and
the optimal passive beamforming vector xopt = xSopt . We
then compute optimal transmit beamforming vector wopt by
substituting Sopt and xopt in (52). These steps are illustrated
in Algorithm 1.

Number of Pilot Transmissions Required and Computa-
tional Complexity: Here, the Tx has NRF RF chains. Thus,
we need ⌈Nt/NRF ⌉Nr number of pilots to estimate NtNr
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Algorithm 1 Manifold Optimization Based Algorithm
1: Tx estimates NtNr direct link and NtNrN reflected link

channel gains.
2: for all S ∈ S and r ∈ {1, 2, . . . , Nr} do
3: Obtain xrS that solves PrS using manifold optimiza-

tion technique.
4: end for
5: (ropt, Sopt) = argmax

r∈{1,2,...,Nr},S∈S

{∥∥xT
rSFrGS + hT

rS

∥∥2}.

6: xopt = xroptSopt .
7: Compute wopt by substituting Sopt, xopt, and ropt in (52).
8: return Sopt,wopt,xopt, ropt.

TABLE I
COMPLEXITY COMPARISON

AS rule Computational complexity
Optimal AS for SC O(NtNrN)
LAS for SC O(NtNr +N)
Optimal AS for MRC O(NtN1.5)
LAS for MRC O(NtN)

MOBSS O(Nr (Nt)
NRF N1.5)

AOBSS O(NrNt log (Nt) +NNRF )
SDR [18] O((N + 1)6)

direct link channel gains and ⌈Nt/NRF ⌉NrN pilots for the
reflected link channel gains. MOBSS solves PrS for each
r ∈ {1, 2, . . . , Nr} and S ∈ S, which means it solves PrS for
O(NrNt

NRF ) times. Computational complexity for each PrS

is O(N1.5) [19]. Hence, the total computational complexity
is O(NrNt

NRFN1.5).
2) AOBSS Algorithm: For a given Rx antenna m, we first

compute the selection metric used by the LAS rule, i.e.,
|hmk| +

∣∣∣∑N
n=1 fmngnk

∣∣∣, for k ∈ {1, 2, . . . , Nt}, and sort
them in descending order. Then from the sorted list, it selects
the first NRF Tx antennas as the subset Sm corresponding
to Rx antenna m. This procedure is repeated for all the Rx
antennas and the subsets S1, . . . , SNr

are computed. It then
selects the Rx antenna with highest direct link channel norm,
i.e., r = argmaxm∈{1,2,...,Nr} {∥hmSm

∥}, and then selects
Tx subset S = Sr. We initialize w =

√
PmaxhrS/ ∥hrS∥.

Then, for (r, S), it solves for the transmit beamforming vector
wr,S and passive beamforming vector xr,S iteratively.

For a given (r, S) and transmit beamforming vector w,
hT
rSw is the effective channel gain from the Tx to Rx.

Similarly, the nth element of FrGSw, i.e., [FrGSw]n is
the effective channel gain of the signal reflected through nth

IRS element. For these effective channel gains, from (11), the
optimal passive beamforming reflection coefficient is given by

xn = exp
(
j arg

(
hT
rSw

)
− j arg ([FrGSw]n)

)
, ∀ n. (55)

The corresponding optimal w is obtained by substituting (55)
in (52). We then update x by substituting the updated w
in (55). This iterative process is continued till the SNR
improvement is less than ϵ or the maximum number of itera-
tions M is reached. Here, in each iteration, we alternatively
optimize x for a given w and then optimize w given x. These
steps are illustrated in Algorithm 2.

TABLE II
PILOT TRANSMISSION COMPARISON

AS rule Number of pilot transmissions
Optimal AS for SC NtNr +NtNrN
LAS for SC 2NtNr +N + 1
Optimal AS for MRC NtNr +NtNrN
LAS for MRC Nt +NtN

MOBSS
⌈

Nt
NRF

⌉
Nr +

⌈
Nt

NRF

⌉
NrN

AOBSS 2
⌈

Nt
NRF

⌉
Nr +N

SDR [18] N + 1

Number of Pilot Transmissions Required and Computa-
tional Complexity: Similar to MOBSS algorithm, we need
⌈Nt/NRF ⌉Nr pilots for the direct link CSI. However, for
the reflected link CSI, we only need ⌈Nt/NRF ⌉Nr pilots
to compute the selection metrics of the antennas and N
pilots to compute the IRS reflection coefficients. This is
because AOBSS algorithm uses the selection metric of the
LAS rule. In total, we need 2 ⌈Nt/NRF ⌉Nr + N pilots.
The number of computations required to select the subset is
O(NrNt log(Nt)) and to compute w and x per iteration is
O(NNRF ). Unlike MOBSS, the computational complexity of
AOBSS algorithm is independent of NRF and the number of
pilot transmissions required is also significantly lower. Table I
compares the computational complexity and the Table II
compares the number of pilot transmissions required for the
proposed algorithms and SDR algorithm in [18].

Algorithm 2 Alternating Optimization Based Algorithm
1: For Rx antenna m, sort the selection metrics |hmk| +∣∣∣∑N

n=1 fmngnk

∣∣∣, for k ∈ {1, 2, . . . , Nt} in the descend-
ing order and assign indices of the first NRF antennas to
subset Sm.

2: Select r = argmaxm∈{1,2,...,Nr} {∥hmSm
∥} and S = Sr.

3: Estimate the reflected link CSI corresponding to (r, S).
4: Initialize t = 0, w1 =

√
PmaxhrS/ ∥hrS∥.

5: while (SNR improvement > ϵ) and (t ≤ M) do
6: Update t = t+ 1.
7: xn =exp

(
j arg

(
hT
rSw

t
)
− j arg ([FrGSw

t]n)
)
.

8: xt = [x1, x2, . . . , xN ].

9: wt+1 =
√
Pmax

h∗
rS+G†

SF†
r(x

t)
∗

∥h∗
rS+G†

SF†
r(xt)∗∥ .

10: end while
11: wS = wt+1.
12: xn = exp

(
j arg

(
hT
rSwS

)
−j arg ([FrGSwS ]n)

)
and

xS = [x1, x2, . . . , xN ]
13: return S, wS , xS , and r.

Extension to Multiple Users: We note that our AS al-
gorithms developed for a single user can be extended to
many scenarios with multiple users. They can be employed
in systems that employ time division multiple access and
transmit to one user at a time. For example, systems that
provide on demand video services by scheduling one user at
a time. Furthermore, they can be used in WiFi systems that
serve one user at a time or wireless power transfer systems that
serve multiple sensor nodes based on a round robin scheduler.
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Fig. 3. Single AS: Average SNR of the optimal AS rule as a function of
N when Rx is at different distances from the Tx and different values of IRS
element spacing dv (Nt = 2, NRF = 1, Nr = 2, SC, Pmax = 10 dBm,
and dti = 40 m).

VI. NUMERICAL RESULTS

We will now study the performance of the proposed AS
rules as a function of different system parameters. We consider
a uniform linear array with half-wavelength antenna spacing
at the Tx and a uniform planar array at the IRS. The Tx and
IRS are placed such that there is a dominant LOS component
between them. We set Kg = 10. We consider independent
Rayleigh fading for the direct link from the Tx to the Rx,
for the link from the IRS to the Rx (Kr = 0), and GNLOS.
Furthermore, we consider correlated channel gains for Tx to
IRS and IRS to Rx links. Correlation model in (23) is used.
Our simulation setup is similar to [18]. The Tx and the IRS
are located at a distance of dti. The Rx moves parallel to
the line joining the Tx and IRS at a vertical distance of
2 m. Let dtr and dir denote the distances from the Tx to Rx
and IRS to Rx, respectively. The path-losses are taken to be
16.6+22 log10(dti), 35+30 log10(dtr), and 20+30 log10(dir),
respectively.3 The noise variance σ2

n is set to −80 dBm. The
SNR improvement threshold ϵ and a maximum number of
iterations M are taken to be 10−4 and 5, respectively.

Single Antenna Selection: Figure 3 plots the average SNR
and normalized average SNR of the optimal AS rule as a
function of N with different IRS element spacing and for
different values of dtr. For a given dtr, the average SNR
increases as N increases. It increases faster as the Rx moves
closer to the IRS as the reflected link gets stronger. As N
increases, the normalized average SNR decreases for small
values of N and reaches a floor equal to Pmaxµgµrl

2
r/σ

2
n for

large N . It reaches this floor value for a smaller N as the
Rx moves closer to the IRS. Also shown are the analytical
expressions in (40), (49), and (50), which match well with
the simulations. As discussed in Section IV, we see that the
average SNR and normalized average SNR are independent
of the channel correlation, which is a function of dv .

3These are obtained for the simplified path-loss model with a signal
attenuation of 30 dB at 1 m reference distance, a carrier frequency of
2.4 GHz, path-loss exponent of 2.2 for the link from the Tx to IRS, and
a path-loss exponent of 3 for the remaining two links. Furthermore, antenna
gains at the Tx, Rx, and IRS are taken to be 0 dB, 5 dB, 15 dB, respectively.
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Fig. 4. Impact of imperfect CSI: Ergodic rate as a function of Pmax for
different distances (NRF = 1, Nt = 2, Nr = 2, SC, N = 49, dv = λ/4,
dti = 40 m).

A. Impact of Imperfect CSI:

Figure 4 plots ergodic rate as a function of Pmax, It com-
pares the performance of the optimal AS and LAS rules with
perfect and imperfect CSI for Rx at two different distances.
Minimum mean square error estimation is performed using
the CSI acquisition procedure described in Section II-A for
the optimal AS rule and using two pilot power procedure
described in Section III-A3 for the LAS rule. With perfect
CSI, the LAS rule performs similar to the optimal rule.
With imperfect CSI, the performance of both rules degrade.
However, degradation in the performance of the LAS rule is
lower due to less number of channel estimations performed.
Furthermore, the LAS rule performs better even with lower
pilot power in the first phase, i.e., P1 = 0 dBm. Thus, the
LAS rule reduces the pilot power consumption significantly
while being robust to estimation errors.

Figure 5 studies the impact of discrete phase shifts on the
proposed single AS rules. Figures 5a and 5b plots ergodic
rate as a function of Pmax for SC and MRC, respectively.
It increases as Pmax increases. Furthermore, it also improves
significantly as N increases. i) SC: We see that the ergodic
rate with three bit quantized phase shift matches well with the
ideal continuous phase shift. Therefore, a finite bit control
link from Tx to IRS is sufficient. The performance of the
proposed AS rule with one bit quantizer matches with that
of the exhaustive search based AS rule that searches over all
2N phase combinations. Thus, the proposed AS rules perform
well with lower complexity. We also see that the approximate
expression in (51) is close to the exact even for small N = 36
and matches for N = 64. System with N = 64 achieves the
same rate as that of the N = 16 with 8 dBm lower transmit
power. ii) MRC: Figure 5b compares the performance of
manifold based AS rule with the LAS rule for MRC developed
in Section III-B2. We see that the LAS rule is able to perform
well even with 3 bit discrete phase levels.

Impact of Channel Correlation: Figure 6 plots outage
probability as a function of Pmax. This is done for IRS
element spacing λ/2 and λ/4 and different values of Nt, Nr,
and N . Also shown are the analysis expressions using (32)
and (39), which match well with the simulations. For a
given Pmax, we see that the outage probability increases as
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element spacing decreases. This is because the spatial channel
correlation increases as the element spacing decreases. For
N = 100, Nt = 4, and Nr = 1 at Pmax = 6 dBm outage
probability with dv = λ/4 is 6.4× higher than that of the
dv = λ/2. Furthermore, at Pmax = 6 dBm, for dv = λ/2,
Nt = 4, and Nr = 1, the outage probability decreases by
two orders of magnitude by increasing IRS elements from
81 to 100. Therefore, IRS-assisted AS improves the outage
performance significantly even with channel correlation.

B. Subset Antenna Selection

Figure 7 plots the average SNR as a function of distance
from Tx to Rx dtr. It compares the performance of the
proposed subset selection algorithms with the SDR-based
beamforming technique that requires number of RF chains
equal to the antennas [18]. Also, shown is the SNR when
there is no IRS. It decreases as dtr increases. With IRS, we
see that the average SNR initially decreases as dtr increases
and then increases till dtr = 40 m. This happens because
the Rx moves closer to the IRS though it moves away from
the Tx, which makes the reflected link stronger. Furthermore,
the average SNR decreases for dtr > 40 m as the Rx moves
away from both the Tx and IRS. We see that an increase of
6 dB in SNR, which is maximum, occurs at dtr = 40 m, i.e.,
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Fig. 7. Subset AS: The average SNR as a function of distance from the Tx
to Rx for different values of N (Nr = 1, Pmax = 5 dBm, dv = λ/2, and
dti = 40 m).
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Fig. 8. Subset AS: Average SEP as a function of Pmax for different number
of antenna elements Nt (Nr = 1, N = 10, dv = λ/2, dti = 40 m,
dtr = 35 m, dir = 5.4 m, and QPSK).

when the Rx is close to the IRS. Note that the simpler AOBSS
algorithm performs very close to the MOBSS algorithm. With
SDR, which requires two additional RF chains, the SNR
improvement is only 2.6 dB and 2.9 dB, for N = 49 and
N = 100, respectively, at dtr = 40 m. Therefore, the
proposed subset selection algorithms perform well with less
hardware.

Figure 8 plots the average SEP as a function of Pmax

for NRF = 2 and different values of Nt with IRS channel
correlation. It compares the performance of MOBSS and
AOBSS algorithms. We see that the simpler AOBSS performs
close to MOBSS. Also, shown is the performance of the SDR-
based beamforming technique [18]. With a fixed number of
RF chains, we see that the average SEP improves significantly
by increasing the number of antenna elements. For example,
at Pmax = 5 dBm, it reduces by a factor of 6.1 and 48.2 when
Nt = 4 and Nt = 8, respectively compared to Nt = 2 with
the same number of RF chains.

VII. CONCLUSIONS

We proposed algorithms that did joint AS, transmit beam-
forming at the Tx, and passive beamforming at the IRS.
For single AS, we derived an optimal AS rules and also
proposed a simpler yet near-optimal LAS rules. For SC,
we showed that the optimal antenna depended only on the
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absolute values of the channel gains and the optimal reflection
coefficient depended only on their phases. Furthermore, they
were decoupled. With IRS channel correlation, we derived
exact expressions for the average SNR, outage-probability,
ergodic rate, and average SEP of the optimal AS rule. From
the closed-form expressions, we saw that the average SNR
due to the reflected link grows quadratically and the average
SNR due to the combination of the direct and reflected links
grows linearly as the number of IRS elements increase. For
MRC, we developed a manifold optimization based algorithm
that converges to a local optimal solution and a LAS rule
that requires lower number of pilots. For subset AS, we
proposed MOBSS algorithm, whose subset search complexity
is exponential in terms of number of RF chains, and AOBSS
algorithm, whose subset search complexity is independent of
the number of RF chains. Our results showed that for a fixed
number of RF chains, the IRS-assisted AS system improved
performance significantly even with imperfect CSI, discrete
phase shifts, and channel correlation.

APPENDIX

A. Proof of Result 1

Here, to maximize the signal power at the Rx, the Tx
transmits with power Pmax. Hence, from (8), the signal power

is equal to Pmax

∣∣∣hrs +
∑N

n=1 frngnsxn

∣∣∣2 . Using triangle
inequality, we know that∣∣∣∣∣hrs +

N∑
n=1

frngnsxn

∣∣∣∣∣ ≤ |hrs|+
N∑

n=1

|frngnsxn| , (56)

where equality is achieved when frngnsxn,∀ n, are
phase aligned with the direct link channel hrs, i.e.,
arg (frngnsxn) = arg (hrs). Thus, for Tx antenna s and Rx
antenna r, the maximum signal power is achieved when

arg (xn) = arg (hrs)− arg (frngns) , ∀ n, (57)

which is equal to Pmax

(
|hrs|+

∑N
n=1 |frngns|

)2
. Therefore,

the optimal Tx antenna sopt and Rx antenna ropt are the ones
that maximizes |hrs|+

∑N
n=1 |frngns|, for r ∈ {1, 2, . . . , Nr}

and s ∈ {1, 2, . . . , Nt}. They are given by (10). From (57),
the corresponding optimal reflection coefficients are given
by (11).

B. Proof of Result 2

The instantaneous SNR of the optimal AS rule normalized
by N2 is given by

γ

N2
=

Pmax

σ2
n

 max
m∈{1,2,...,Nr},
k∈{1,2,...,Nt}

{
|hmk|
N

+

N∑
n=1

|fmngnk|
N

}
2

.

(58)
Substituting (48) in (58) and averaging yields

SNR
N2

=
Pmax

σ2
n

E

[
max
m,k

{(
|hmk|
N

+ lr
√
µrµg

)2
}]

. (59)

Upon simplification, we get

SNR
N2

=
Pmax

σ2
nN

2
E
[
max
m,k

{
|hmk|2

}]
+

Pmax

σ2
n

µgµrl
2
r (60)

+ 2
Pmax

σ2
nN

lr
√
µrµgE

[
max
m,k

{|hmk|}
]
. (61)

Since |hmk|2 is an exponential RV, we know that
E
[
maxm,k{|hmk|2}

]
=
∑NtNr

k=1 (1/k) [36, (8)].
To simplify the expectation in the last term, we use the

following result. For a non-negative RV A, we know that
E [A] =

∫∞
0

Pr (A > a) da. Thus, we get

E
[
max
m,k

{|hmk|}
]
=

∫ ∞

0

(
1− [Pr (|h11| ≤ x)]

NrNt

)
dx,

(62)
where the second equality follows as the RVs
|h11| , . . . , |hNrNt | are i.i.d. Substituting the CDF of
Rayleigh RV |h11| and simplifying the integral, we get

E
[
max
m,k

{|hmk|}
]
=

NrNt∑
k=1

(
NrNt

k

)
(−1)k+1 1

2

√
πµd

k
.

(63)
Substituting this along with E

[
maxm,k{|hmk|2}

]
in (60)

yields the expression for the normalized average SNR in (49).
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